• Title/Summary/Keyword: naphthaleneacetic acid

Search Result 62, Processing Time 0.025 seconds

Induction of in vitro root tubers in Holostemma annulare (Roxb.) K. Schum. for the production of bioactive metabolites

  • Smitha Devi, Padmavathi Amma Somasekharan Nair;Hemanthakumar, Achuthan Sudarsanan;Preetha, Thankappan Suvarna
    • Journal of Plant Biotechnology
    • /
    • v.49 no.3
    • /
    • pp.230-239
    • /
    • 2022
  • Holostemma annulare (Family Asclepiadaceae) is an invaluable vulnerable medicinal plant; the root tubers are used in Ayurveda medicine and by folk healers to treat various ailments. In this study, Schenk and Hildebrandt medium fortified with the cytokinins 6-benzyl adenine, kinetin, and auxins, including indole 3-butyric acid, indole 3-acetic acid, α-naphthaleneacetic acid, and 2,4-dichlorophenoxyacetic acid, were checked for their efficiency on root tuber induction from different explants. Adventitious root tubers were more successfully induced from in vitro leaf segments and shoots when cultured in Schenk and Hildebrandt medium supplemented with 0.5 mg/l of α-naphthaleneacetic acid. In addition, preliminary phytochemical analysis of in vitro root tubers and identification of different secondary metabolites were conducted. Thin layer chromatography and high performance thin layer chromatography analysis of the crude methanolic extracts of the in vitro root tuber identified the presence of lupeol, a bioactive triterpene. Adventitious root tuber induction offers a novel method for the in vitro production of bioactive metabolites that can be scaled up by bioreactors, thus ensuring the conservation and sustainable utilization of H. annulare. The study warrants further scale-up production and pharmacological investigation that can be extended for pharmaceutical needs.

Growth Regulators Prolong Bract Longevity of Potted Bougainvillea

  • Liu, Fang-Yin;Chang, Yu-Sen
    • Horticultural Science & Technology
    • /
    • v.29 no.4
    • /
    • pp.326-335
    • /
    • 2011
  • When bougainvilleas are subjected to indoor low-light conditions, flower bracts regularly abscise. This study elucidates the effects of plant growth regulators on bract longevity of potted bougainvillea. Potted 'Taipei Red' bougainvillea in four different bract development stages were treated with 1-MCP (1-methylcyclopropene), NAA (1-naphthaleneacetic acid), SNA (sodium salt of naphthaleneacetic acid), IBA (indolebutyric acid), BA (6-benzylaminopurine), $KH_2PO_4$ (potassium dihydrogen phosphate), Put (diamine putrescine), SA (salicylic acid), or STS (silver thiosulfate) and were moved to indoor low-light conditions after treatments. Experimental results indicate that 1-MCP, NAA, SNA, BA, Put, and SA prolonged bract longevity, and this effect increased as bract stage increased. The effect of STS was significant in early bract stages and decreased as bract stages increased. Additionally, 1-MCP, NAA, SNA, BA, Put, SA, and STS treatment significantly reduced endogenous ACC (1-aminocyclopropene-1-carboxylate) content and ACC oxidase activity, suggesting that the inhibition of ethylene production was achieved via physiological metabolism. However, treatment with IBA or $KH_2PO_4$ had no effect on the bract longevity at any stage. In the combined chemical treatments, NAA + STS or NAA + SA were effectively for prolonging bract longevity and contained less protein or chlorophyll degradation, decrease ACC oxidase or ethylene production than the control. In conclusion, we propose that combined chemical treatment significantly prolonged the bract longevity and more effectively than single chemical treatment at any stage.

Specificity of Auxin Action on Ethylene Production in Corn Coleoptile Segments (옥수수(Zea mays L.) 자엽초 절편에서 에틸렌 생성에 대한 오옥신의 작용 특성)

  • 윤인선
    • Journal of Plant Biology
    • /
    • v.34 no.4
    • /
    • pp.325-330
    • /
    • 1991
  • The ability of several auxin analogs to induce ethylene production was tested in the corn coleoptile. The synthetic auxins 1-naphthaleneacetic acid (1-NAA) and 2, 4-dichlorophenoxyacetic acid (2, 4-D) had strong stimulatory effects on ethylene induction surpassing that of IAA. Both 2-naphthalaneacetic acid (2-NAA) and 2, 6-dichlorophenoxy acetic acid (2, 6-D), structural analogs of these auxins, respectively, were found to be inactive. Treatment with NPA, a strong inhibitor of polar auxin transport, led to drastic increase in IAA-induced ethylene production while it has bo effect on ethylene production induced by 1-NAA. A positive correlative existed between intracellular auxin level and ethylene production.

  • PDF

Root and Shoot Formation in Explant and Callus Derived from Root and Cotyledon of GinBeng(Panun ginseng C. A. Meyer) (인삼근 및 자엽 Callus의 기관분화에 관한 연구)

  • Choe, Gwang-Tae;Kim, Myeong-Won;Sin, Hui-Seok
    • Journal of Ginseng Research
    • /
    • v.5 no.1
    • /
    • pp.35-40
    • /
    • 1981
  • Explants of mature root tissues and calli derived from root and cotyledon of Panax ginseng were cultured in vitro on Murashige and Skoog medium supplemented with 2, 4-dichlorophen-oxyacetic acid(3,4-D), naphthaleneacetic acid(NAA), benzyladenine, and gibberellic acid to assess their capacity to regenerate organs. Root formation at high percentage (46.2-61.1%) was obtained 20-30 days after culturing on media supplemented with combinations of NAA(5 mg/l) and kinetin (1 mg/l), And calli derived from cotyledon produced numerous embryoids in media($\frac{1}{2}$MS) containing 2,4-D(0.5 mg/l) and kinetin (0.5 mg/l). Reculture of these embryoids in media($\frac{1}{2}$MS) enriched with 1 mg/l of benzyladenine and 1 mg/l of gibberellic acid resulted in more plantlet regeneration.

  • PDF

Organ Formation-The Formation of Adventitious Roots, Trichomes and Calli from Leaf Segments of Arabidopsis thaliana by Naphthaleneacetic acid Concentrations, and Their Determination times (애기장대 (Arabidopsis thaliana) 잎 절편에서의 기관형성 특히 Naphthaleneacetic acid의 농도에 따른 부정근, 모용 및 캘러스 형성과 Determination Time)

  • 한태진;김인현;김송림;김준철;임창진;진창덕
    • Korean Journal of Plant Tissue Culture
    • /
    • v.26 no.3
    • /
    • pp.211-217
    • /
    • 1999
  • The effect of auxins and cytokinins on the formation of adventitious shoots, adventitious roots, trichomes, and calli in MS basal medium was investigated in leaf segments from ecotype Columbia of Arabidopsis thaliana. Adventitious shoots, adventitious roots, trichome, and calli were formed from leaf segments by a wide range of hormone concentrations and combinations. Adventitious shoots were formed respectively in treatment with 0.1mg/L IAA and 10 mg/L BA. Adventitious roots were formed in treatments with low concentration of IAA and NAA. Trichomes and calli were formed by increasing the concentration of IAA and NAA. The optimal combination was 0.5mg/L NAA and 0.1mg/L BA for trichome formation, 10mg/L NAA and 10mg/L BA for calli formation. When NAA was treated alone in culture media, adventitious roots were formed in 0.1mg/L, trichomes were formed in 2.0mg/L, and calli were formed in 10mg/L. Inductive time for formation of adventitious roots, trichomes and calli were determined at 6,7 and 18 days respectively by periodical transfer of leaf segments from NAA containing medium to NAA free medium.

  • PDF

The molecular structure of (+) -6-methoxy-.alpha. 1-2-naphtha-leneacetic acid determined by X-Ray method

  • Kim, Yang-Bae;Song, Hyun-June
    • Archives of Pharmacal Research
    • /
    • v.7 no.2
    • /
    • pp.137-139
    • /
    • 1984
  • The molecular structure of (+)-6-Me hoxy-.alpha.-methyl-2-naphthaleneacetic acid (Naproxen), $C_{14}H_{14}O_{ 3}$, was determined by X-Ray diffraction technique. Naproxen crystallized in $P2_1$ with two molecules on the unit cell of dimensions a = 7.855, b = 5.783, c = 13.347$\AA$ and $\beta$ = $93.9^{\circ}$

  • PDF

An Efficient In vitro Propagation of Zanthoxylum piperitum DC.

  • Hwang, Sung-Jin;Hwang, Baik
    • Korean Journal of Medicinal Crop Science
    • /
    • v.11 no.4
    • /
    • pp.316-320
    • /
    • 2003
  • A protocol is described for rapid multiplication of Zanthoxylum piperitum DC. (Rutaceae), an important aromatic and medicinal plant, through shoot-tip explant cultures. Murashige and Skoog (MS) medium supplemented with various concentrations of N-6-benzyladenine (BA), N-6-benzylaminopurine (BAP) and thidiazuron (TDZ), in single or in combination with ${\alpha}-naphthaleneacetic$ acid (NAA), was used to determine the rate of shoot proliferation. N-6-benzyladenine (BA) used at 0.5mg/l, was the most effective in initiating multiple shoot proliferation at the rate of 23 microshoots per shoot-tip explants after 40 days of culture. Shoot multiplication increased 1.2-fold in each successive subculture. Induction of rooting (98%) was achieved by transferring the shoots to the same basal medium containing 2 mg/l indole-3-butyric acid (IBA). Plantlets went through a hardening phase in a controlled growth chamber, prior to in vivo transfer. These results represented that possible application for the mass production of plantlets through in vitro culture system of Zanthoxylum piperitum DC.

Callus Induction and Plant Regeneration from Mature Embryos in Oat

  • Lee, Byung-Moo;Kim, Kyung-Hee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47 no.5
    • /
    • pp.352-355
    • /
    • 2002
  • Mature embryos of five oat genotypes were cultured to develop an efficient method of callus induction and plant regeneration. Murashige and Skoog(MS) and N6 media supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D) and kinetin were used for callus induction. Percentage of callus induction showed significant among the combinations of plant growth regulators. Callus induction showed high efficiency in medium containing 3 mg/$\ell$ of 2,4-D. The high frequency of callus induction was obtained in Gwiri37. For plant regeneration, calli induced from mature embryos were transferred onto MS and N6 media supplemented with combinations of 6-benzyladenine (BA) and naphthaleneacetic acid (NAA) for 5 weeks. Percentage of plant regeneration showed high in MS medium containing 0.2 mg/$\ell$ of NAA and 1 mg/$\ell$ of BA. The callus initiation medium affected the subsequent plant regeneration. Treatment with 3 mg/$\ell$ of 2,4-D, and 3 mg/$\ell$ of 2,4-D and 3 mg/$\ell$ of kinetin in callus induction media showed high frequency for plant regeneration. Plant regeneration frequency among the genotypes showed significant. Especially, Gwiri37 showed high regeneration frequency. Regenerated shoots were treated with 200, 350 and 500 mg/$\ell$ of indole-3-butyric acid (IBA) transferred onto half-strength MS medium without plant growth regulators. Treatment of shoots with IBA induced root formation rapidly.

Characterization of Cell Growth and Camptothecin Production in Cell Cultures of Camptotheca acuminata

  • Song, Seung-Hoon;Byun, Sang-Yo
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.6
    • /
    • pp.631-638
    • /
    • 1998
  • Studies were made to elucidate the cell growth and the production of camptothecin and its derivatives in cell cultures of Camptotheca acuminata. High resolution HPLC chromatograms to analyze camptothecin and 10-hydroxycamptothecin in lactone and carboxylate forms were obtained with a fluorescence detector. Calli inductions were optimized with the young stem of explant on Schenk and Hildebrandt (SH) medium supplemented with 5 mg/l $\alpha$-naphthaleneacetic acid (NAA), 0.2 mg/l 6-benzylamino purine (BAP), 2.0% sucrose, and 0.5% agar. The hybrid medium, a mixture of SH and Murashige and Skoog (MS) salts, was developed for homogeneous suspension cultures without large cell aggregates. The optimum phytohormone concentrations for successful suspension cultures were 1.0mg/l of 2,4-D and 0.5 mg/l of kinetin. The highest growth in suspension cultures was observed when 49.7% (w/w) of the cells was composed of small aggregates which were below 0.1 mm in diameter. Time course changes of cell growth and camptothecin production showed that camptothecin accumulation was started at the end of the growth phase and the maximum content was obtained 10 days after inoculation. Yeast extract elicitor increased camptothecin accumulation 4 times. Methyl jasmonate and jasmonic acid also increased camptothecin production 6 and 11 times, respectively.

  • PDF