• 제목/요약/키워드: nanotechnology in sports

검색결과 17건 처리시간 0.017초

Repair of sports bone injury based on multifunctional nanomaterial particles

  • Dongbai Guo
    • Structural Engineering and Mechanics
    • /
    • 제86권4호
    • /
    • pp.487-501
    • /
    • 2023
  • Nanoparticles have lower size and larger specific surface area, good stability and less toxic and side effects. In recent years, with the development of nanotechnology, its application range has become wider and wider, especially in the field of biomedicine, which has received more and more attention. Bone defect repair materials with high strength, high elasticity and high tissue affinity can be prepared by nanotechnology. The purpose of this paper was to study how to analyze and study the composite materials for sports bone injury based on multifunctional nanomaterials, and described the electrospinning method. In this paper, nano-sized zirconia (ZrO2) filled micro-sized hydroxyapatite (HAP) composites were prepared according to the mechanical properties of bone substitute materials in the process of human rehabilitation. Through material tensile and compression experiments, the performance parameters of ZrO2/HAP composites with different mass fraction ratios were analyzed, the influence of filling ZrO2 particles on the mechanical properties of HAP matrix materials was clarified, and the effect of ZrO2 mass fraction on the mechanical properties of matrix materials was analyzed. From the analysis of the compressive elastic modulus, when the mass fraction of ZrO2 was 15%, the compressive elastic modulus of the material was 1222 MPa, and when 45% was 1672 MPa. From the analysis of compression ratio stiffness, when the mass fraction of ZrO2 was 15%, the compression ratio stiffness was 658.07 MPa·cm3/g, and when it was 45%, the compression ratio stiffness is 943.51MPa·cm3/g. It can be seen that by increasing the mass fraction of ZrO2, the stiffness of the composite material can be effectively increased, and the ability of the material to resist deformation would be increased. Typically, the more stressed the bone substitute material, the greater the stiffness of the compression ratio. Different mass fractions of ZrO2/HAP filling materials can be selected to meet the mechanical performance requirements of sports bone injury, and it can also provide a reference for the selection of bone substitute materials for different patients.

Evaluation of combat calorie consumption based on GoBe2 nanosensor

  • Shuo Guan;Benxu Zou
    • Advances in nano research
    • /
    • 제14권6호
    • /
    • pp.527-539
    • /
    • 2023
  • Measuring energy burn during intensive combat sport has been a challenging concerns for a long time. In the present article, the energy consumption during combat sports is measured by use of wearable GoBe2 equipped with nanotechnology measuring devices. In this regard, 12 professional combat athletes were asked to wear GoBe2 devices during different sessions of intensive combat exercises. The curves provided by GoBe2 nano-sensor devices are further collected and analyzed for different combat durations. On the other hand, energy consumption in these athlete is calculated using other validated methods to evaluate reliability of GoBe2 wearable devices. Based on the results obtained from these experiments a multi-parameter mathematical model is presented for estimation of combat calorie consumptions. The results show that nanotechnology in these type of sensors could help in estimation of calorie consumption during combat. Moreover, the reliability of using wearable GoBe2 sensors are satisfactory except for some specific conditions. The mathematical model provides a satisfactory results based on athlete physical condition and also duration of the combat with about 8% error margin in the results.

Application of nanocomposite material in the tennis equipment to avoid the injury

  • Zhanfeng Chen
    • Advances in nano research
    • /
    • 제14권3호
    • /
    • pp.235-246
    • /
    • 2023
  • Nanotechnology, like any other revolutionary innovation in materials science, has significantly influenced the level of competition in sports. Nanotechnology provides various benefits and enormous potential to enhance athletic equipment, making players safer, more comfortable, and more agile. Various sporting equipment is being infused with nanomaterials, including carbon nanotubes (CNTs), silica nanoparticles (SNPs), nanoclays fullerenes, etc., to enhance athlete and equipment performance. Each of these nanomaterials gives athletic equipment an extra benefit like high strength and stiffness, longevity, decreased weight, abrasion resistance, etc. This paper mechanically analysis the structural strength of tennis equipment to avoid injury. As a result, the bending forces are applied to the reinforced structures to investigate their durability.

A Decade of the National Institute for Materials Science as an Independent Administrative Institution

  • Kishi, Teruo;Takemura, Masahiro
    • STI Policy Review
    • /
    • 제3권2호
    • /
    • pp.152-171
    • /
    • 2012
  • In April 2001, many Japanese national institutes were reorganized as Independent Administrative Institutions (IAI) based on the General Act for Independent Administrative Institutions and the act for each institution. Under the Ministry of Education, Culture, Sports, Science and Technology (MEXT), the National Institute for Materials Science (NIMS) was established by the merger of the National Research Institute for Metals (NRIM) and the National Institute for Research in Inorganic Materials (NIRIM). One of the biggest changes was the expansion of autonomous administration. The nanotechnology and material R&D field was prioritized in the 2nd (2001-2005) and the 3rd (2006-2010) Science and Technology Basic Plans; subsequently, NIMS was assigned to take the initiative in nanotechnology as well as materials science. NIMS has proactively expanded research fields through the introduction of researchers from polymers, electronics, and biotechnology as well as member institutes of the World Materials Research Institute Forum (WMRIF). Globalization has been promoted through programs that include the International Center for Young Scientists (ICYS) and the International Center for Materials Nanoarchitectonics (MANA). The 4th Science and Technology Basic Plan (2011-2015) emphasizes outcomes-recovery and rebirth from the disaster, green innovation, and life innovation. The Midterm Plan for NIMS also follows it. R&D collaboration by multi-partners (that include industry, university, and GRI) should be strategically promoted where GRI are especially required to play a hub function for innovative R&D and open innovation. NIMS highlights are Tsukuba Innovation Arena (TIA) and the Nanotechnology Platform Project. On January 20, 2012, a new organization was decided on by the Japanese Government where several IAI from different science and technology areas will be merged to realize more effective R&D as well as administrative cost reductions. NIMS is also supposed to be merged with 4 other R&D IAI under MEXT by the end of 2013.

아동 비만의 예방 및 치료를 위한 운동 전략 (Exercise Strategies for the Prevention and Treatment of Obesity in Children)

  • 조진경;한진희;강현식;윤진환
    • Journal of Obesity & Metabolic Syndrome
    • /
    • 제23권3호
    • /
    • pp.156-161
    • /
    • 2014
  • 전 세계적으로 비만 인구는 증가 추세에 있고 그중 소아 청소년의 비만 유병률이 급속한 증가 추세에 있다. 소아 청소년 비만은 성인비만으로 이어지며 당뇨병, 고지혈증, 고혈압, 대사증후군과 같은 만성질환을 동반하는 것으로 알려진다. 소아 청소년의 비만은 체력, 신체활동, 좌식생활의 증가 및 서구화된 식이 습관과 같은 생활습관과 밀접한 관련이 있다. 따라서 균형 잡힌 식이습관과 유산소성 운동 그리고 적절한 저항성 운동을 개입시키고 좌식시간을 수정하는 것이 비만 치료에 권고된다. 본 미니 종설에서는 소아 청소년 비만 치료에 효과적인 수단으로써 다각적인 신체활동 전략에 대해 고찰하였다.

Dynamic analysis of nanotube-based nanodevices for drug delivery in sports-induced varied conditions applying the modified theories

  • Shaopeng Song;Tao Zhang;Zhiewn Zhui
    • Steel and Composite Structures
    • /
    • 제49권5호
    • /
    • pp.487-502
    • /
    • 2023
  • In the realm of nanotechnology, the nonlocal strain gradient theory takes center stage as it scrutinizes the behavior of spinning cantilever nanobeams and nanotubes, pivotal components supporting various mechanical movements in sport structures. The dynamics of these structures have sparked debates within the scientific community, with some contending that nonlocal cantilever models fail to predict dynamic softening, while others propose that they can indeed exhibit stiffness softening characteristics. To address these disparities, this paper investigates the dynamic response of a nonlocal cantilever cylindrical beam under the influence of external discontinuous dynamic loads. The study employs four distinct models: the Euler-Bernoulli beam model, Timoshenko beam model, higher-order beam model, and a novel higher-order tube model. These models account for the effects of functionally graded materials (FGMs) in the radial tube direction, giving rise to nanotubes with varying properties. The Hamilton principle is employed to formulate the governing differential equations and precise boundary conditions. These equations are subsequently solved using the generalized differential quadrature element technique (GDQEM). This research not only advances our understanding of the dynamic behavior of nanotubes but also reveals the intriguing phenomena of both hardening and softening in the nonlocal parameter within cantilever nanostructures. Moreover, the findings hold promise for practical applications, including drug delivery, where the controlled vibrations of nanotubes can enhance the precision and efficiency of medication transport within the human body. By exploring the multifaceted characteristics of nanotubes, this study not only contributes to the design and manufacturing of rotating nanostructures but also offers insights into their potential role in revolutionizing drug delivery systems.

나노위해성 관리를 위한 나노물질 주요 배출원 파악 (Investigation on the Main Exposure Sources of Nanomaterials for Nanohazards Assessment)

  • 김영훈;박준수;김휘로;이정진;배은주;이수승;곽병규;최경희;박광식;이종협
    • Environmental Analysis Health and Toxicology
    • /
    • 제23권4호
    • /
    • pp.257-265
    • /
    • 2008
  • Nanotechnology is emerging as one of the key technologies of the 21 st century and is expected to enable one to broaden the applicability across a wide range of sectors that can benefit public and improve industrial competitiveness. Already, consumer products containing nanomaterials are available in markets including coatings, computers, clothing, cosmetics, sports equipment and medical devices. Recently, Institute of Occupational Medicine in UK reported an occupational hygiene review for nanoparticles in the viewpoint of nanotoxicity. They reported that the exposure control is very important issues in workplace for exposure assessment, but no proper methods are available to measure the extent of exposures to nanoparticles in the workplace. Therefore, for the estimation of exposure of nanomaterials, we have to approach the material-balance methodology, which similarly carried out in TRI (toxic release inventory) for hazardous chemicals. In order to use this methodology, the exposure source of nanomaterials should be determined firstly. Therefore, herein we investigated the main sources and processes for the exposure to nanomaterals by conducting the survey. The results could be used to define and assess nanohazard sources.