• 제목/요약/키워드: nanostructured lipid carrier

검색결과 3건 처리시간 0.018초

α-Tocopherol을 함유한 Nanostructured Lipid Carriers의 특성과 안정화 효과 (Characteristics of α-Tocopherol-loaded Nanostructured Lipid Carriers and their Stabilization Effect)

  • 전윤경;임윤미;진병석
    • 공업화학
    • /
    • 제26권6호
    • /
    • pp.659-665
    • /
    • 2015
  • 지용성 토코페롤(${\alpha}$-tocopherol)의 산화 안정성을 높이기 위하여 nanostructured lipid carrier (NLC)에 봉입을 시도하였다. 먼저 구성 성분과 혼합 비율을 달리한 여러 NLC를 만들고 각각의 특성을 살펴보았다. 고체 지질로 세틸 팔미테이트 또는 글리세릴 모노스테아레이트를 사용했을 때는 안정한 상태의 NLC 입자가 만들어지지만 스테아린 산으로 만든 NLC에서는 상분리가 일어났다. NLC 입자는 수백 나노미터 크기로 만들어지는데 지질대비 용매의 비율이 높을수록 입자크기가 작게 나타났다. 고급 지방알콜인 옥틸도데칸올을 고체 지질에 첨가하면 결정화도가 감소하면서 지질 매트릭스의 배열규칙성 이 약해짐을 DSC (Differential Scanning Calorimetry) 열차트와 anisotropy 측정을 통해서 확인하였다. 고온($45^{\circ}C$) 또는 UV 빛이 조사되는 조건에서 토코페롤이 NLC에 봉입되어 있으면 용액이나 에멀젼 상태로 있는 것에 비해 산화 안정성이 크게 향상됨을 DPPH 테스트와 과산화물가 측정으로 확인하였다.

Cyclosporin A가 봉입된 nanostructured lipid carriers의 물리적 특성연구 (Physical properties of cyclosporin A-loaded nanostructured lipid carriers)

  • 송충길;정석재;심창구;김대덕
    • Journal of Pharmaceutical Investigation
    • /
    • 제38권1호
    • /
    • pp.39-43
    • /
    • 2008
  • Cyclosporin A (CyA), a potent immunosuppressive drug used in allogeneic transplants and autoimmune disease, is a typical water-insoluble drug. Recently, nanoparticle carriers were investigated to improve the intestinal absorption of drugs. In this study, CyA-loaded nanostructured lipid carriers (NLCs) were prepared from a hot o/w emulsion using the high pressure homogenization method. The NLCs were consisted of cationic lipids, solid lipids, liquid lipids (oils), surfactant and stabilizer. Encapsulation efficiency of CyA in NLCs was approximately 71%. The average particle size and zeta potential of NLCs were below 250 nm and above +40 mV, respectively. The morphology of NLCs was confirmed by transmission electron microscopy (TEM) analysis. Compared to the CyA powder, higher in vitro release of CyA from NLCs was observed after burst release within 30 min. Thus, CyA-loaded NLCs could be applied not only for parenteral route but also for gastrointestinal administration, which needs further investigation.

Enhanced Occlusiveness of Nanostructured Lipid Carrier (NLC)-based Carbogel as a Skin Moisturizing Vehicle

  • Choi, Woo-Sik;Cho, Hye-In;Lee, Hyun-Young;Lee, Seo-Hyun;Choi, Young-Wook
    • Journal of Pharmaceutical Investigation
    • /
    • 제40권6호
    • /
    • pp.373-378
    • /
    • 2010
  • In order to develop a topical preparation which has a high occlusive property with skin moisturization, nano-structured lipid carrier (NLC) systems along with solid lipid nanoparticle (SLN) were designed. Various NLC dispersions were successfully formulated with Compritol 888 ATO as a solid lipid, Labrafil M 1944 CS as an oil, and Tween 80 as a surfactant. The increase of oil content (5 to 50%) led to the decrease in the occlusion factor in the order of SLN > NLC-5 > NLC-15 = NLC-30 > NLC-50. Particle size of lipid particulates was in the range of 100 to 160 nm. NLC-based carbogels were prepared by the employment of humectants such as urea, glycerin, and Tinocare GL to carbomer gel. NLC-30 gel formulations containing 4 or 8 % of lipid particles showed improved occlusive effect in vitro, compared to NLC-free gel base. Even though NLC-free gel base revealed comparable occlusion effect by itself, the occlusion factor of 4 % NLC-30 gel was about 2-fold higher than that of NLC-free gel base.