Browse > Article
http://dx.doi.org/10.4333/KPS.2010.40.6.373

Enhanced Occlusiveness of Nanostructured Lipid Carrier (NLC)-based Carbogel as a Skin Moisturizing Vehicle  

Choi, Woo-Sik (Division of Pharmaceutical Science, College of Pharmacy, Chung-Ang University)
Cho, Hye-In (Division of Pharmaceutical Science, College of Pharmacy, Chung-Ang University)
Lee, Hyun-Young (Division of Pharmaceutical Science, College of Pharmacy, Chung-Ang University)
Lee, Seo-Hyun (Division of Pharmaceutical Science, College of Pharmacy, Chung-Ang University)
Choi, Young-Wook (Division of Pharmaceutical Science, College of Pharmacy, Chung-Ang University)
Publication Information
Journal of Pharmaceutical Investigation / v.40, no.6, 2010 , pp. 373-378 More about this Journal
Abstract
In order to develop a topical preparation which has a high occlusive property with skin moisturization, nano-structured lipid carrier (NLC) systems along with solid lipid nanoparticle (SLN) were designed. Various NLC dispersions were successfully formulated with Compritol 888 ATO as a solid lipid, Labrafil M 1944 CS as an oil, and Tween 80 as a surfactant. The increase of oil content (5 to 50%) led to the decrease in the occlusion factor in the order of SLN > NLC-5 > NLC-15 = NLC-30 > NLC-50. Particle size of lipid particulates was in the range of 100 to 160 nm. NLC-based carbogels were prepared by the employment of humectants such as urea, glycerin, and Tinocare GL to carbomer gel. NLC-30 gel formulations containing 4 or 8 % of lipid particles showed improved occlusive effect in vitro, compared to NLC-free gel base. Even though NLC-free gel base revealed comparable occlusion effect by itself, the occlusion factor of 4 % NLC-30 gel was about 2-fold higher than that of NLC-free gel base.
Keywords
Carbogel; Lipid carrier; Nanoparticle; Moisturizer; Occlusion;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Muller, R.H., Radtke, M., Wissing, S.A., 2002b. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv. Drug Deliv. Rev. 54, S131-155.   DOI
2 Muller, R.H., Radtke, M., Wissing, S.A., 2002a. Nanostructured lipid matrices for improved microencapsulation of drugs. Int. J. Pharm. 242, 121-128.   DOI   ScienceOn
3 Scheuer, B., 1983. Contact allergy caused by triethanolamine. Hautarzt 34, 126-129.
4 Schurer, N.Y., Elias, P.M., 1991. The biochemistry and function of stratum corneum lipids. Adv. Lipid Res. 24, 27-56.
5 Souto, E.B., Muller, R.H., 2006. The use of SLN and NLC as topical particulate carriers for imidazole antifungal agents. Pharmazie 61, 431-437.
6 Tamburic, S., Craig, D.Q.M., 1995a. Rheological evaluation of polyacrylic acid hydrogels. J. Pharm. Sci. 1, 107-109.
7 Tamburic, S., Craig, D.Q.M., 1995b. An investigation into the rheological, dielectric and mucoadhesive properties of poly(acrylic acid) gel systems. J. Control. Release 37, 59-68.   DOI
8 Wissing, S.A., Kayser, O., Muller, R.H., 2004. Solid lipid nanoparticles for parenteral drug delivery. Adv. Drug Deliv. Rev. 56, 1257-1272.   DOI
9 Wissing, S.A., Muller, R.H., 2002. The influence of the crystallinity of lipid nanoparticles on their occlusive properties. Int. J. Pharm. 242, 377-379.   DOI
10 Wissing, S.A., Muller, R.H., 2003. Cosmetic applications for solid lipid nanoparticles (SLN). Int. J. Pharm. 254, 65-68.   DOI
11 Yonese, M., 2001. Sustained drug delivery by gels. Gels Handbook 3, 230-240.   DOI
12 Ziegenmeyer, J., Niedner, R., 1992. Biopharmazeutische Aspekte bei der anwendung von dermatika. Dermatika 243-308.
13 Dittgen, M., Durrani, M., Lehmann, K., 1997. Acrylic polymers: A review of pharmaceutical applications. STP Pharm. Sci. 7, 403-437.
14 Flynn, T.C., Petros, J., Clark, R.E., Viehman, G.E., 2001. Dry skin and moisturizers. Clin. Dermatol. 19, 387-392.   DOI
15 Jenning, V., Gysler, A., Schafer-Korting, M., Gohla, S.H., 2000. Vitamin A loaded solid lipid nanoparticles for topical use: occlusive properties and drug targeting to the upper skin. Eur. J. Pharm. Biopharm. 49, 211-218.   DOI
16 Kristl, J., Volk, B., Gasperlin, M., Sentjurc, M., Jurkovic, P., 2003. Effect of colloidal carriers on ascorbyl palmitate stability. Eur. J. Pharm. Sci. 19, 181-189.   DOI
17 Kumar, S., Haglund, B.O., Himmelstein, K.J., 1994. In situ-forming gels for ophthalmic drug delivery. J. Ocul. Pharmacol. 10, 47-56.   DOI
18 Muller, R.H., Lucks, J.S., 1996. Medication vehicles made of solid lipid particles (solid lipid nanospheres-SLN). European Patent No. 0605497.
19 Morimoto, K., Hama, I., Nakamoto, Y., Takeeda, T., Hirano, E., Morisaka, K., 1980. Pharmaceutical studies of polyacrylic acid aqueous gel bases: absorption of insulin from polyacrylic acid aqueous gel bases following rectal administration in alloxan diabetic rats and rabbits. J. Pharmacobio-dyn. 3, 24-32.   DOI
20 Muller, R.H., Keck, C.M., 2004. Challenges and solutions for the delivery of biotech drugs - a review of drug nanocrystal technology and lipid nanoparticles. J. Biotechnol. 113, 151-170.   DOI
21 Mehnert, W., Mader, K., 2001. Solid lipid nanoparticles: production, characterization and applications. Adv. Drug Deliv. Rev. 47, 165-196.   DOI
22 Muller, R.H., Mader, K., Gohla, S., 2000. Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. Eur. J. Pharm. Biopharm. 50, 161-177.   DOI
23 Ding, S., 1998. Recent developments in ophthalmic drug delivery. Pharm. Sci. Technol. Today 1, 328-335.   DOI
24 Cavalli, R., Bargoni, A., Podio, V., Muntoni, E., Zara, G. P., Gasco, M.R., 2003. Duodenal administration of solid lipid nanoparticles loaded with different percentages of tobramycin. J. Pharm. Sci. 92, 1085-1094.   DOI
25 Chu, J.S., Chandrasekharan, R., Amidon, G.L., Weiner, N.D., Goldberg, A.H., 1991. Viscometric study of polyacrylic acid systems as mucoadhesive sustained-release gels. Pharm. Res. 11, 1408-1412.
26 De Vringer, T., 1992. Topical preparation containing a suspension of solid lipid particles. European Patent No.91200664.