• Title/Summary/Keyword: nanostamp

Search Result 5, Processing Time 0.025 seconds

UV transparent stamp fabrication for UV nanoimprint lithography (UV 나노임프린트 리소그래피용 UV 투과성 나노스탬프 제작)

  • Jeong, Jun-Ho;Sim, Young-Suk;Sohn, Hyon-Kee;Shin, Young-Jae;Lee, Eung-Suk;Hur, Ik-Boum;Kwon, Sung-Won
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1069-1072
    • /
    • 2003
  • Ultraviolet-nanoimprint lithography (UV-NIL) is a promising nanoimprint method for cost-effectively defining nanometer scale structures at room temperature and low pressure. Nanostamp fabrication technology is a key technology for UV-NIL because fabricating a high resolution nanostamp is the first step for defining high resolution nanostructures in a substrate. We used quartz as an UV transparent stamp material for the UVNIL. A $5{\times}5{\times}0.09$ inch stamp was fabricated using the quartz etch process in which Cr film was used as a hard mask for transferring nanostructures into the quartz. In this paper, we describe the quartz etching process and discuss the results including SEM images.

  • PDF

UV nanoimprint lithography using a multi-dispensing method (다중 디스펜싱 방법에 의한 UV-나노임프린트 리소그래피)

  • 심영석;손현기;신영재;이응숙;정준호
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.7
    • /
    • pp.604-610
    • /
    • 2004
  • Ultraviolet-nanoimprint lithography (UV-NIL) is a promising method for cost-effectively defining nanoscale structures at room temperature and low pressure. Since the resolution of transferred nanostructures depends strongly upon that of nanostamps, the nanostamp fabrication technology is a key technology to UV-NIL. In this paper, a $5\times5\times0.09$ in. quartz stamp whose critical dimension is 377 nm was fabricated using the etching process in which a Cr film was employed as a hard mask for transferring nanostructures onto the quartz plate. To effectively apply the fabricated 5-in. stamp to UV-NIL on a 4-in. Si wafer, we have proposed a new UV-NIL process using a multi-dispensing method as a way to supply resist on a wafer. Experiments have shown that the multi-dispensing method can enable UV-NIL using a large-area stamp.

Single-step UV nanoimprint lithography on a 4" Si wafer (4" Si 웨이퍼에 대한 single-step UV 나노임프린트 리소그래피)

  • 정준호;손현기;심영석;신영재;이응숙;최성욱;김재호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.199-202
    • /
    • 2003
  • Ultraviolet-nanoimprint lithography (UV-NIL) is a promising method for cost-effectively defining nanoscale structures at room temperature and low pressure. Since the resolution of nanostructures depends strongly upon that of nanostamps, the nanostamp fabrication technology is a key technology to UV-NIL. In this paper, a 5$\times$5$\times$0.09 in. quartz stamp whose critical dimension is 377 nm was fabricated using the etch process in which a Cr film was employed as a hard mask for transferring nanostructures onto the quartz plate. To effectively apply tile fabricated 5-in. stamp to UV-NIL on a 4-in. Si wafer, we have proposed a new UV-NIL process using a multi-dispensing method as a way to supply resist on a wafer Experiments have shown that the multi-dispensing method can enable UV-NIL rising a large-area stamp.

  • PDF

The effect of micro/nano-scale wafer deformation on UV-nanoimprint lithography using an elementwise patterned stamp (다중양각스탬프를 사용하는 UV 나노임프린트 리소그래피공정에서 웨이퍼 미소변형의 영향)

  • 정준호;심영석;최대근;김기돈;신영재;이응숙;손현기;방영매;이상찬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1119-1122
    • /
    • 2004
  • In the UV-NIL process using an elementwise patterned stamp (EPS), which includes channels formed to separate each element with patterns, low-viscosity resin droplets with a nano-liter volume are dispensed on all elements of the EPS. Following pressing of the EPS, the EPS is illuminated with UV light to cure the resin; and then the EPS is separated from several thin patterned elements on a wafer. Experiments on UV-NIL were performed on an EVG620-NIL. 50 - 70 nm features of the EPS were successfully transferred to 4 in. wafers. Especially, the wafer deformation during imprint was analyzed using the finite element method (FEM) in order to study the effect of the wafer deformation on the UV-NIL using EPS.

  • PDF