• Title/Summary/Keyword: nanosphere lithography

Search Result 20, Processing Time 0.027 seconds

Effect of Fabricating Nanopatterns on GaN-Based Light Emitting Diodes by a New Way of Nanosphere Lithography

  • Johra, Fatima Tuz;Jung, Woo-Gwang
    • Korean Journal of Materials Research
    • /
    • v.23 no.3
    • /
    • pp.177-182
    • /
    • 2013
  • Nanosphere lithography is an inexpensive, simple, high-throughput nanofabrication process. NSL can be done in different ways, such as drop coating, spin coating or by means of tilted evaporation. Nitride-based light-emitting diodes (LEDs) are applied in different places, such as liquid crystal displays and traffic signals. The characteristics of gallium nitride (GaN)-based LEDs can be enhanced by fabricating nanopatterns on the top surface of the LEDs. In this work, we created differently sized (420, 320 and 140 nm) nanopatterns on the upper surfaces of GaN-based LEDs using a modified nanosphere lithography technique. This technique is quite different from conventional NSL. The characterization of the patterned GaN-based LEDs revealed a dependence on the size of the holes in the pattern created on the LED surface. The depths of the patterns were 80 nm as confirmed by AFM. Both the photoluminescence and electroluminescence intensities of the patterned LEDs were found to increase with an increase in the size of holes in the pattern. The light output power of the 420-nm hole-patterned LED was 1.16 times higher than that of a conventional LED. Moreover, the current-voltage characteristics were improved with the fabrication of differently sized patterns over the LED surface using the proposed nanosphere lithography method.

Minimization of the reflection of GaAs solar cell by surface texturing using natural lithography (Natural lithography를 이용한 surface texturing을 통한 GaAs solar cell의 반사도 감소)

  • Kim, Byung-Jae;Kim, Ji-Hyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.156-158
    • /
    • 2009
  • 우리 연구팀은 $SiO_2$ nanospheres를 이용한 natural lithography를 통해 2가지 방법으로 GaAs 기판의 반사율을 감소시켰다. 먼저 GaAs 기판 위에 benzocyclobutene(BCB) 고분자를 코팅한 후, 그 위에 $SiO_2$ nanospheres를 코팅한다. 그리고 고분자의 유리전이 온도이상으로 가열하면 $SiO_2$ nanospheres가 고분자 속으로 가라앉게 되어 렌즈 형태의 표면이 형성된다. 또한, 이 상태에서 BOE 용액을 통해 $SiO_2$ nanospheres를 제거하여 오목한 형태의 표면을 형성할 수 있다. 이러한 2가지 방법의 surface texturing을 통해 우리는 GaAs 표면의 반사도를 각각 400~800nm의 파장에서 평균 13.6%~16.52%의 반사율을 얻을 수 있었다.

  • PDF

Improvement of Extraction Efficiency of OLED by Nanosphere Lithography (나노스피어 리소그라피를 이용한 OLED 광추출 효율의 향상)

  • Han, Gwang-Min;Yeo, Jong-Bin;Lee, Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.12
    • /
    • pp.1002-1009
    • /
    • 2011
  • The light extraction efficiency of top-emitting organic light-emitting diode (OLED) was improved by insertion of corrugation patterns between indium tin oxide and organic layers. The corrugation patterns was fabricated by nanosphere lithography, which could form a self-assembled particle monolayer over a large area. The electrical and optical properties for the OLED devices fabricated by vacuum evaporation, were investigated. We have demonstrated the enhancement of the power efficiency of corrugated OLED. As a result, the power efficiency of the corrugated OLED was found to be more than 42%.

A study of multiple-exposure nanosphere lithography for photonic quasi-crystals fabrication (광자 준결정 제작을 위한 다중 노광 나노구 리소그라피 연구)

  • Yeo, Jong-Bin;Lee, Hyun-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.62-62
    • /
    • 2010
  • Photonic quasi-crystals(PQCs) have been fabricated by a multiple-exposure nanosphere lithography (MENSL) method using the self-assembled nanospheres as lens-mask patterns. The multiple-exposing source is collimated laser beam and rotation, tilting system. The arrays of the PQCs exhibited variable lattice structures and shape the control of ratating angle ($\theta$), tilting angle ($\gamma$) and the exposure conditions. The used nanosphere size is upto the $1\;{\mu}m$. Images of prepared 2D PQCs were observed by SEM. We believe that the MENSL method is a suitable useful tool to realize the PQCs arrays of large area.

  • PDF

Size Tunable Nano Patterns Using Nanosphere Lithography with Ashing and Annealing Effect (나노 구체 리소그라피법에 Ashing과 Annealing 효과를 적용하여 크기조절 가능한 나노패턴의 제조)

  • Lee, Yu-Rim;Alam, Mahbub;Kim, Jin-Yeol;Jung, Woo-Gwang;Kim, Sung-Dai
    • Korean Journal of Materials Research
    • /
    • v.20 no.10
    • /
    • pp.550-554
    • /
    • 2010
  • This work presents a fabrication procedure to make large-area, size-tunable, periodically different shape metal arrays using nanosphere lithography (NSL) combined with ashing and annealing. A polystyrene (PS, 580 ${\mu}m$) monolayer, which was used as a mask, was obtained with a mixed solution of PS in methanol by multi-step spin coating. The mask morphology was changed by oxygen RIE (Reactive Ion Etching) ashing and temperature processing by microwave heating. The Au or Pt deposition resulted in size tunable nano patterns with different morphologies such as hole and dots. These processes allow outstanding control of the size and morphology of the particles. Various sizes of hole patterns were obtained by reducing the size of the PS sphere through the ashing process, and by increasing the size of the PS sphere through annealing treatment, which resulted in tcontrolling the size of the metallic nanoparticles from 30 nm to 230 nm.

Fabrication of Pair-Photonic Crystal Arrays using Multiple-Exposure Nanosphere Lithography (다중노광 나노구 리소그라피를 이용한 쌍-광자결정 어레이 제작)

  • Yeo, Jong-Bin;Han, Gwang-Min;Lee, Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.3
    • /
    • pp.245-249
    • /
    • 2010
  • Two dimensional(2D) pair-photonic crystals (pair-PCs) have been fabricated by a multiple-exposure nanosphere lithography (MENSL) method using the self-assembled nanospheres as lens-mask patterns and the collimated laser beam as a multiple-exposing source. The arrays of the 2D pair-PCs exhibited variable lattice structures and shape the control of rotating angle (${\Theta}$), tilting angle (${\gamma}$) and the exposure conditions. In addition, the base period or filling factor of pair-PCs as well as their shapes could be changed by experimental conditions and nanosphere size. A 1.18-${\mu}m$-thick resist was spincoated on Si substrate and the multiple exposure was carried out at change of ${\gamma}$ and ${\Theta}$. Images of prepared 2D pair-PCs were observed by SEM. We believe that the MENSL method is a suitable useful tool to realize the pair-periodic arrays of large area.

The Enhancement of External Quantum Efficiency in GaN V-LED Using Nanosphere Lithography (나노스피어 리소그래피를 이용한 GaN V-LED의 외부양자효율 향상)

  • Yang, Hoe-Young;Cho, Myeong-Hwan;Lee, Hyun-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.414-414
    • /
    • 2009
  • 나노스피어 리소그래피는 기존의 리소그래피 방법에 비해 나노 크기 패턴을 제작하는데 공정이 간단하며 재현성있게 대면적에 패터닝이 가능하다는 장점이 있다. 본 연구에서는 Vertical LED(V-LED)의 External quantum efficiency 향상을 위하여 나노스피어 리소그래 피를 이용하여 V-LED의 n-GaN 표면을 패터닝을 하였다. n-GaN 위에 Sputter를 이용하여 $SiO_2$를 증착 후 나노스피어를 스핀 코팅을 이용하여 단일막을 형성하였다. 그 후, 반응성 이온 식각 장치를 이용하여 나노스피어의 크기를 조절하고 $SiO_2$층을 식각하였다. 다음과 같은 공정 후 $SiO_2$층을 Mask층으로 하여 n-GaN 표면을 식각하였다. 실험 결과 나노스피어 리소그래피를 이용하여 V-LED의 External quantum efficiency 향상을 위한 n-GaN 표면의 패턴 제작이 가능함을 확인할 수 있었다.

  • PDF

A Study on the Fabrication of Periodic Holes on Metal Electrode for Electrodeionization System Application (전기탈이온시스템 응용을 위한 주기적 홀을 갖는 금속 전극 제작에 관한 연구)

  • Yeo, Jong-Bin;Sun, Sang-Wook;Lee, Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.3
    • /
    • pp.227-231
    • /
    • 2013
  • Electrodeionization is a hybrid separation process of electrodialysis and ion exchange to produce high purity water under electric field. This article provides a fabrication result of hole patterned metal electrode for elecrodeionization system. The hole patterns have been fabricated by nanosphere lithography (NSL). The technique utilizes the self-assembled nanospheres as lens-mask patterns and collimated laser beam source. The hole patterns have a periodic array structure. The images of hole pattern on metal electrode prepared were observed by SEM. We believe that the periodic hole patterned metal electrode structure is a useful device applicable for metal mat electrode in electrodeionization system.

Synthesis of vertically aligned silicon nanowires with tunable irregular shapes using nanosphere lithography

  • Gu, Ja-Hun;Lee, Tae-Yun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.88.1-88.1
    • /
    • 2012
  • Silicon nanowires (SiNWs), due to their unusual quantum-confinement effects that lead to superior electrical and optical properties compared to those of the bulk silicon, have been widely researched as a potential building block in a variety of novel electronic devices. The conventional means for the synthesis of SiNWs has been the vapor-liquid-solid method using chemical vapor deposition; however, this method is time consuming, environmentally unfriendly, and do not support vertical growth. As an alternate, the electroless etching method has been proposed, which uses metal catalysts contained in aqueous hydrofluoric acids (HF) for vertically etching the bulk silicon substrate. This new method can support large-area growth in a short time, and vertically aligned SiNWs with high aspect ratio can be readily synthesized with excellent reproducibility. Nonetheless, there still are rooms for improvement such as the poor surface characteristics that lead to degradation in electrical performance, and non-uniformity of the diameter and shapes of the synthesized SiNWs. Here, we report a facile method of SiNWs synthesis having uniform sizes, diameters, and shapes, which may be other than just cylindrical shapes using a modified nanosphere lithography technique. The diameters of the polystyrene nanospheres can be adjustable through varying the time of O2 plasma treatment, which serve as a mask template for metal deposition on a silicon substrate. After the removal of the nanospheres, SiNWs having the exact same shape as the mask are synthesized using wet etching technique in a solution of HF, hydrogen peroxide, and deionized water. Different electrical and optical characteristics were obtained according to the shapes and sizes of the SiNWs, which implies that they can serve specific purposes according to their types.

  • PDF