• Title/Summary/Keyword: nanoparticles (NPs)

Search Result 390, Processing Time 0.024 seconds

Medicinal aspects of Murraya koenigii mediated silver nanoparticles

  • Mumtaz, Sumaira;Nadeem, Raziya;Sarfraz, Raja A.;Shahid, Muhammad
    • Advances in nano research
    • /
    • v.11 no.6
    • /
    • pp.657-665
    • /
    • 2021
  • The present work aimed to explore green approach via aqueous leaves extract of Murraya koenigii (ALEMk) for the synthesis of silver nanoparticles (AgNPsMk) in single step. The synthesis process was visualized with a color change and monitored by employing UV/Visible spectroscopy and a clear peak attained at 420 nm confirming the synthesis of AgNPsMk. The possible functional groups present in the extract which participated in the synthesis of AgNPsMk were identified with the help of FTIR spectroscopy. Further characterization using TEM images revealed the spherical shape of AgNPsMk with average particle size of 20 nm displaying well dispersion throughout the solution. Pronounced antioxidant activities of AgNPsMk at increased concentrations observed which evidencing strong radical scavenging ability. Moreover, AgNPsMk exhibited strong antibacterial behavior when tested against bacterial strains of Escherichia coli and Bacillus subtilis. Moving ahead, in vitro cytotoxicity work revealed potent cell viability loss appearing in AU565 and HeLa cancer cell lines on exposure to AgNPsMk at increased concentration. Finally, in vivo assessment carried out inside male Wistar rats indicated non toxic effect on examined liver tissues besides biochemical analysis including bilirubin, alkaline phosphtase (ALP) and serum glutamate pyruvate transaminase (SGPT) which found within the normal range when compared with control. The prior research work profoundly apprises the potential of green synthesized AgNPsMk to play a significant role in biomedical applications and formulations.

In vitro effect of silver nanoparticles on avian spermatozoa

  • Karashi, Naser;Farzinpour, Amjad;Vaziry, Asaad;Farshad, Abbas
    • Advances in nano research
    • /
    • v.11 no.6
    • /
    • pp.649-655
    • /
    • 2021
  • Nanotechnology is widely considered a major technology of the twenty-first century. Nanoparticles (NPs) has been shown to pass through reproductively significant biological barriers such as the blood-testicle and placental barriers. Thus, the purpose of this study was to determine the effect of silver Nanoparticles (Ag-NPs) on sperm-egg interaction and spermatozoa quality parameters in quail spermatozoa. Semen was suspended in Ringer solution containing Ag-NPs levels at 5.5 × 106 sperm/ml (0, 0.01, 0.1, 1 and 10 ppm). The results indicated that when sperm were counted at 0.1 ppm, the number of holes formed on the inner perivitelline layer was significantly increased compared to the control. The 10 ppm group had a significant reduction in sperm viability. At 0.1 and 1 ppm, the membrane integrity was significantly decreased (P < 0.05). All treatments (except 0.01 ppm Ag-NPs) had a significant (P < 0.05) effect on the percentage of spermatozoa with an intact acrosome when compared to the control group. At 0.1, 1, and 10 ppm Ag-NPs, morphological defects in the acrosome were observed. As a result, Ag-NPs is likely capable of destroying the acrosome membrane. This research indicates that Ag-NPs may be cytotoxic to spermatozoa by impairing sperm functionality and increasing sperm mortality.

Safety assessment of biological nanofood products via intelligent computer simulation

  • Zhao, Yunfeng;Zhang, Le
    • Advances in nano research
    • /
    • v.13 no.2
    • /
    • pp.121-134
    • /
    • 2022
  • Emerge of nanotechnology impacts all aspects of humans' life. One of important aspects of the nanotechnology and nanoparticles (NPs) is in the food production industry. The safety of such foods is not well recognized and producing safe foods using nanoparticles involves delicate experiments. In this study, we aim to incorporate intelligent computer simulation in predicting safety degree of nanofoods. In this regard, the safety concerns on the nano-foods are addressed considering cytotoxicity levels in metal oxides nanoparticles using adaptive neuro-fuzzy inference system (ANFIS) and response surface method (RSM). Three descriptors including chemical bond length, lattice energy and enthalpy of formation gaseous cation of 15 selected NPs are examined to find their influence on the cytotoxicity of NPs. The most effective descriptor is selected using RSM method and dependency of the toxicity of these NPs on the descriptors are presented in 2D and 3D graphs obtained using ANFIS technique. A comprehensive parameters study is conducted to observe effects of different descriptors on cytotoxicity of NPs. The results indicated that combinations of descriptors have the most effects on the cytotoxicity.

Screening of the antiparasitic activity of gold nanoparticles on hydatid cysts protoscolices in vitro

  • Sadiya Aziz Anah
    • Korean Journal of Veterinary Research
    • /
    • v.63 no.4
    • /
    • pp.33.1-33.5
    • /
    • 2023
  • Many scolicidal agents have been used to destroy fertile protoscolices, but these scolicidal agents have side effects, highlighting the need for research on effective and non-toxic replacement scolicidal agents. Gold nanoparticles (AuNPs) are biocompatible and non-toxic. The current study examined the effects of AuNPs in killing the protoscolices of Echinococcus granulosus in vitro using eosin staining. The protoscolices were treated with 0.2, 0.4, 0.8, or 1.0 mg/mL of AuNPs for 15, 30, 45, or 60 minutes. A concentration of 1.0 mg/mL was the most efficient in killing the protoscolices after 60 minutes exposure, reaching 96%, followed by 0.8 mg/mL (84.5%), whereas 0.4 and 0.2 mg/mL of AuNPs achieved a death rate of 76.8% and 68.5%, respectively. The loss of the protoscolices was lower at shorter exposure times with the same concentration of AuNPs and increased as the AuNP concentration was increased at the same exposure time. Significant differences were found between the different groups compared to the control group.

Fe-Nanoparticle Amalgamation Using Lagenaria siceraria Leaf Aqueous Extract with Focus on Dye Removal and Antibacterial Efficacy

  • Kirti;Suantak Kamsonlian;Vishnu Agarwal;Ankur Gaur;Jin-Won Park
    • Korean Chemical Engineering Research
    • /
    • v.61 no.2
    • /
    • pp.287-295
    • /
    • 2023
  • Iron nanoparticles (Fe-NPs) were synthesized employing Lagenaria siceraria (LS) leaf aqueous extract as a reducing and capping medium to remove methylene blue (MB) dye and have antibacterial properties against G-negative (Escherichia coli) and G-positive bacteria (Staphylococcus aureus). The formation of LS-Fe-NPs (Lagenaria-siceraria-iron-nanoparticles) was confirmed by a change in color from pale yellow to dark brown. Characterization techniques, such as particle size analysis (PSA), transmission electron microscopy (TEM) and scanning electron microscopy (SEM), were employed to prove nano spherical particles of size range between 80-100 nm. Phytochemicals and the presence of iron in LS-Fe-NPs nanoparticles were proved by UV-visible spectrophotometry. Further, Fourier transform infrared spectroscopy (FTIR) analysis results confirmed the existence of bioactive molecules in the plants. The magnetic property was analyzed using a vibrating sample magnetometer (VSM), which displayed that the synthesized nanoparticles were superparamagnetic and exhibiting a saturation magnetization of 12.5 emu/g. Synthesized magnetic nanoparticles were used in methylene blue (MB) dye removal through adsorption. About 83% of 100 mg/L MB dye was removed within 120 min at pH 6 with a maximum adsorption capacity of 246.8 mg/g. Antibacterial efficacy of LS-Fe-NPs was screened against G-negative (Escherichia coli) and G-positive bacteria (Staphylococcus aureus), respectively, and found that LS-Fe-NPs were effective against Staphylococcus aureus.

Application of Biosynthesized Silver Nanoparticles Against a Cancer Promoter Cyanobacterium, Microcystis aeruginosa

  • El-Sheekh, Mostafa Mohamed;El-Kassas, Hala Yassin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.16
    • /
    • pp.6773-6779
    • /
    • 2014
  • Background: Nanotechnology opens new applications in many fields including medicine. Among all metallic nanoparticles, silver nanoparticles (silver NPS) have proved to be the most effective against a large variety of organisms including toxic cyanobacteria. Materials and Methods: Silver NPs were biosynthesized in vivo with different alga species namely, Spirulina piatensis, Chlorella vulgaris and Scenedesmus oh/iquus following two scenarios. First: by suspending a thoroughly washed algae biomass in 1 mM aqueous $AgN0_3$ solution. Second: by culturing them individually in culture media containing the same concentration of $AgN0_3$. Silver NPs were characterized using UV-Vis spectroscopy, transmission electron microscopy (TEM), energy dispersive analysis (EDX) and Fourier transform infra-red (FfIR) spectroscopy. The biosynthesized silver NPs were tested for cytotoxic activity against a cancer promoter cyanobacteruim Microcystis aeruginosa, considering effects on cell viability and chlorophyll content. Results: The surface plasmon band indicated the biosynthesis of silver NPs at ~400 nm. Transmission electron microscopy (TEM) revealed that the silver NPs had a mean average size below 100 nm. Energy-dispersive analysis X-ray (EDX) spectra confirmed the presence of silver element. FfIR spectral analyses suggested that proteins and or polysaccharides may be responsible for the biosynthesis of silver NPs and (-COO-) of carboxylate ions is responsible for stabilizing them. The toxic potentialities ofthe biosynthesized silver NPs against the cancer promoter cyanobacterium, Microcystis aeruginosa showed high reduction in viable cells count and the total chlorophyll content. Conclusions: The potential activity of the biosynthesized silver NPs from the studied algae species against Microcystis aernginosa cells is expected to be mainly mediated by the release of silver ions (Ag+) from the particle surface and bioactive compounds as indicated by FfIR analysis.

A Novel Approach for Sericin-Conjugated Silver Nanoparticle Synthesis and Their Potential as Microbicide Candidates

  • Lv, Xiaowen;Wang, Huanru;Su, Airong;Chu, Ying
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.8
    • /
    • pp.1367-1375
    • /
    • 2018
  • Silver nanoparticles have been widely applied for biomedical areas owing to their potent antiviral and antibacterial activities. Synthesis of silver nanoparticles using biomacromolecules is more efficient, environment-friendly, and cost-saving compared with the traditional approach. In this paper, a novel approach was developed to establish a reaction system with $Ag^+-BH4^--sericin$ to synthesize silver nanoparticles conjugated to sericin (AgNPs-Sericin). Sericin could be as a good dispersant and stabilizing agent, which is able to modify nanoscaled AgNPs, the average diameter of which was only $3.78{\pm}1.14nm$ prepared in a 0.3 mg/ml sericin solution. The characterizations of the AgNPs-Sericin were determined by FTIR, thermogravimetry, and XRD analyses. The results showed that the synthesized AgNPs conjugated with sericin as organic phase. Via SAED and XRD analysis, we showed that these AgNPs formed polycrystalline powder with a face-centered cubic structure of bulk metals. Moreover, we investigated the antiviral and antibacterial activities of AgNPs-Sericin, and the results showed that AgNPs-Sericin exhibited potent anti-HIV-1 activity against CCR5-tropic and CXCR4-tropic strains, but no significant cytotoxicity was found toward human genital epithelial cells compared with free silver ions, which are accepted as a commonly used potent antimicrobial agent. Moreover, its antibacterial activity was determined via flow cytometry. The results showed that AgNPs-Sericin could suppress gram-negative (E. coli) and gram-positive (S. aureus) bacteria, but more was potent for the gram-negative one. We concluded that our AgNPs-Sericin could be a potential candidate as a microbicide or antimicrobial agent to prevent sexually transmitted infections.

Novel Antibacterial, Cytotoxic and Catalytic Activities of Silver Nanoparticles Synthesized from Acidophilic Actinobacterial SL19 with Evidence for Protein as Coating Biomolecule

  • Wypij, Magdalena;Ostrowski, Maciej;Piska, Kamil;Wojcik-Pszczola, Katarzyna;Pekala, Elzbieta;Rai, Mahendra;Golinska, Patrycja
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.9
    • /
    • pp.1195-1208
    • /
    • 2022
  • Silver nanoparticles (AgNPs) have potential applications in medicine, photocatalysis, agriculture, and cosmetic fields due to their unique physicochemical properties and strong antimicrobial activity. Here, AgNPs were synthesized using actinobacterial SL19 strain, isolated from acidic forest soil in Poland, and confirmed by UV-vis and FTIR spectroscopy, TEM, and zeta potential analysis. The AgNPs were polydispersed, stable, spherical, and small, with an average size of 23 nm. The FTIR study revealed the presence of bonds characteristic of proteins that cover nanoparticles. These proteins were then studied by using liquid chromatography with tandem mass spectrometry (LC-MS/MS) and identified with the highest similarity to hypothetical protein and porin with molecular masses equal to 41 and 38 kDa, respectively. Our AgNPs exhibited remarkable antibacterial activity against Escherichia coli and Pseudomonas aeruginosa. The combined, synergistic action of these synthesized AgNPs with commercial antibiotics (ampicillin, kanamycin, streptomycin, and tetracycline) enabled dose reductions in both components and increased their antimicrobial efficacy, especially in the case of streptomycin and tetracycline. Furthermore, the in vitro activity of the AgNPs on human cancer cell lines (MCF-7, A375, A549, and HepG2) showed cancer-specific sensitivity, while the genotoxic activity was evaluated by Ames assay, which revealed a lack of mutagenicity on the part of nanoparticles in Salmonella Typhimurium TA98 strain. We also studied the impact of the AgNPs on the catalytic and photocatalytic degradation of methyl orange (MO). The decomposition of MO was observed by a decrease in intensity of absorbance within time. The results of our study proved the easy, fast, and efficient synthesis of AgNPs using acidophilic actinomycete SL19 strain and demonstrated the remarkable potential of these AgNPs as anticancer and antibacterial agents. However, the properties and activity of such particles can vary by biosynthesized batch.

A Comparative Study of Gas Sensing Properties of Au-loaded ZnO and Au@ZnO Core-shell Nanoparticles

  • Majhi, Sanjit Manohar;Dao, Dung Van;Lee, Hu-Jun;Yu, Yeon Tae
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.76-81
    • /
    • 2018
  • Au@ZnO core-shell nanoparticles (NPs) were prepared by a simple method followed by heat-treatment for gas sensor applications. The advantage of the core-shell morphology was investigated by comparing the gas sensing performances of Au@ZnO core-shell NPs with pure ZnO NPs and different wt% of Au-loaded ZnO NPs. The crystal structures, shapes, sizes, and morphologies of all sensing materials were characterized by XRD, TEM, and HAADF-STEM. Au@ZnO core-shell NPs were nearly spherical in shape and Au NPs were encapsulated in the center with a 40-45 nm ZnO shell outside. The gas sensing operating temperature for Au@ZnO core-shell NPs was $300^{\circ}C$, whereas it was $350^{\circ}C$ for pure ZnO NPs and Au-loaded ZnO NPs. The maximum response of Au@ZnO core-shell NPs to 1000 ppm CO at $300^{\circ}C$ was 77.3, which was three-fold higher than that of 2 wt% Au-loaded ZnO NPs. Electronic and chemical effects were the primary reasons for the improved sensitivity of Au@ZnO core-shell NPs. It was confirmed that Au@ZnO core-shell NPs had better sensitivity and stability than Au-loaded ZnO NPs.

Synthesis of Highly Dispersible Metal Nanoparticles in P3HT:PCBM Layers and Their Effects on the Performance of Polymer Solar Cells (P3HT:PCBM 층 내 분산 가능한 금속 나노입자의 제조 및 이를 포함한 고분자 태양전지 소자의 특성에 관한 연구)

  • Kim, Min-Ji;Choi, Gyu-Chae;Kim, Young-Kuk;Kim, Yang-Do;Baek, Youn-Kyoung
    • Journal of Powder Materials
    • /
    • v.21 no.3
    • /
    • pp.179-184
    • /
    • 2014
  • In this study, we prepare polymer solar cells incorporating organic ligand-modified Ag nanoparticles (O-AgNPs) highly dispersed in the P3HT:PCBM layer. Ag nanoparticles decorated with water-dispersible ligands (WAgNPs) were also utilized as a control sample. The existence of the ligands on the Ag surface was confirmed by FT-IR spectra. Metal nanoparticles with different surface chemistries exhibited different dispersion tendencies. O-AgNPs were highly dispersed even at high concentrations, whereas W-AgNPs exhibited significant aggregation in the polymer layer. Both dispersion and blending concentration of the Ag nanoparticles in P3HT:PCBM matrix had critical effects on the device performance as well as light absorption. The significant changes in short-circuit current density ($J_{SC}$) of the solar cells seemed to be related to the change in the polymer morphology according to the concentration of AgNPs introduced. These findings suggested the importance of uniform dispersion of plasmonic metal nanoparticles and their blending concentration conditions in order to boost the solar cell performance.