• Title/Summary/Keyword: nanoparticles (NPs)

Search Result 385, Processing Time 0.035 seconds

Effects of Ag Nanoparticle Flow Rates on the Progress of the Cell Cycle Under Continuously Flowing "Dynamic" Exposure Conditions

  • Park, Min Sun;Yoon, Tae Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.123-128
    • /
    • 2014
  • In this study, we have investigated the flow rate effects of Ag nanoparticle (NP) suspensions on the progress of the cell cycle by using a microfluidic image cytometry (${\mu}FIC$)-based approach. Compared with the conventional "static" exposure conditions, enhancements in G2 phase arrest were observed for the cells under continuously flowing "dynamic" exposure conditions. The "dynamic" exposure conditions, which mimic in vivo systems, induced an enhanced cytotoxicity by accelerating G2 phase arrest and subsequent apoptosis processes. Moreover, we have also shown that the increases in delivered NP dose due to the continuous supply of Ag NPs contributed dominantly to the enhanced cytotoxicity observed under the "dynamic" exposure conditions, while the shear stress caused by these slowly flowing fluids (i.e., flow rates of 6 and $30{\mu}L/h$) had only a minor influence on the observed enhancement in cytotoxicity.

Development of Highly Stable Organic Nonvolatile Memory

  • Baeg, Kang-Jun;Kim, Dong-Yu;You, In-Kyu;Noh, Yong-Young
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.904-906
    • /
    • 2009
  • Organic field-effect transistor (OFET) memory is an emerging device for its potential to realize light-weight, low cost flexible charge storage media. Here we report on a solution-processed poly[9,9-dioctylfluorenyl-2,7-diyl]-co-(bithiophene)] (F8T2) nano floating-gate memory (NFGM) with top-gate/bottom-contact device configuration. A reversible shift in the threshold voltage ($V_{Th}$) and the reliable memory characteristics were achieved by incorporation of thin Au nanoparticles (NPs) as charge storage sites for negative electrons at the interface between polystyrene and cross-linked poly(4-vinylphenol).

  • PDF

pH Dependent Size and Size Distribution of Gold Nanoparticles

  • Kang, Aeyeon;Park, Dae Keun;Hyun, Sang Hwa;Yun, Wan Soo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.267.2-267.2
    • /
    • 2013
  • In the citrate reduction method of gold nanoparticle (AuNP) synthesis, pH of the reaction mixture can have a considerable impact on the size and size distribution of AuNPs. In this work, effects of pH variation upon the size and its distribution were examined systematically. As the initial pH was change from 5.5 to 10.5, it showed an optimal pH around 7.5. At this pH, both of the size and the size distribution showed their minimum values, which was verified by transmission electron microscopy and UV-vis spectroscopy. This occurrence of optimal pH was discussed with the results of in situ monitoring pH during the reaction of AuNP synthesis.

  • PDF

Fabrication and separation performance of polyethersulfone/sulfonated TiO2 (PES-STiO2) ultrafiltration membranes for fouling mitigation

  • Ayyaru, Sivasankaran;Ahn, Young-Ho
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.199-209
    • /
    • 2018
  • Polyethersulfone (PES)/sulfonated $TiO_2$ ($STiO_2$) nanoparticles (NPs) UF blended membranes were fabricated with different loadings of $STiO_2$. The modified membranes exhibited significant improvement in surface roughness, porosity, and pore size when compared to the PES membrane. The $P-STiO_2$ 1 and $P-TiO_2$ 1 blended membranes exhibited higher water flux, approximately 102.4% and 62.6%, respectively, compared to PES. SPP-$STiO_2$ and $P-STiO_2$ showed lower Rir fouling resistance than the $P-TiO_2$ blended membrane. Overall, the $STiO_2$-blended membranes provide high hydrophilicity permeability, anti-fouling performance, and improved BSA rejection attributed to the hydrogen bonding force and more electrostatic repulsion properties of $STiO_2$.

Preparation of Novel Natural Polymer-based Magnetic Hydrogels Reinforced with Hyperbranched Polyglycerol (HPG) Responsible for Enhanced Mechanical Properties (과분지 폴리글리세롤(HPG) 강화를 통해 기계적 물성이 향상된 새로운 천연 고분자 기반 자성 하이드로젤의 제조)

  • Eun-Hye Jang;Jisu Jang;Sehyun Kwon;Jeon-Hyun Park;Yujeong Jeong;Sungwook Chung
    • Clean Technology
    • /
    • v.29 no.1
    • /
    • pp.10-21
    • /
    • 2023
  • Hydrogels that are made of natural polymer-based double networks have excellent biocompatibility, low cytotoxicity, and high water content, assuring that the material has the properties required for a variety of biomedical applications. However, hydrogels also have limitations due to their relatively weak mechanical properties. In this study, hydrogels based on an alginate di-aldehyde (ADA) and gelatin (Gel) double network that is reinforced with additional hydrogen bonds formed between the hydroxyl (-OH) groups of the hyperbranched polymer (HPG) and the functional groups present inside of the hydrogels were successfully synthesized. The enhanced mechanical properties of these synthesized hydrogels were evaluated by varying the amount of HPG added during the hydrogel synthesis from 0 to 25%. In addition, magnetite nanoparticles (Fe3O4 NPs) were synthesized within the hydrogels and the structures and the magnetic properties of the hydrogels were also characterized. The hydrogels that contained 15% HPG and Fe3O4 NPs exhibited superparamagnetic behaviors with a saturation magnetization value of 3.8 emu g-1. These particular hydrogels also had strengthened mechanical properties with a maximum compressive stress of 1.1 MPa at a strain of 67.4%. Magnetic hydrogels made with natural polymer-based double networks provide improved mechanical properties and have a significant potential for drug delivery and biomaterial application.

Bioassessment of Heavy Metals, Nanoparticles, and Soils Contaminated with Metals using Various Bioassays (다양한 독성법을 이용한 중금속, 나노입자 및 금속오염 토양 평가)

  • Kong, In Chul;Shi, Yu Tal;Lee, Min Kyung;Kang, Il Mo
    • Economic and Environmental Geology
    • /
    • v.48 no.3
    • /
    • pp.261-271
    • /
    • 2015
  • Toxicity results of metals, nanoparticles (NPs), and soils contaminated with metals were introduced on this review. Following methods were used: seed germination, bioluminescence, enzyme activity, and mutation. In general, different sensitivities were observed, depending on types of bioassays and pollutants. Among tested seeds, sensitivities of Lactucus and Raphanus were greater than others. Of single metal exposure, effect by As(III) was greater than others, and high revertant mutation ratio (5.1) was observed at 1 mg/L arsenite, indicating high mutagenicity. No general pattern was observed on the effect of metal mixture, but synergistic effect was observed with seeds. In case of soils, no correlation was observed between total metal contents and toxicity. Toxicity of NPs was observed as follows: CuO > ZnO > NiO > $TiO_2$, $Fe_2O_3$, $Co_3O_4$. Especially, no considerable effects were observed by $TiO_2$, $Fe_2O_3$, and $Co_3O_4$ under tested concentration (max. 1,000 mg/L). The evaluation results of interactive toxic effects using various bioassays may comprise a useful tool for the bioassessment of various environmental pollutants.

Enhancement in the Photocatalytic Activity of Au@TiO2 Nanocomposites by Pretreatment of TiO2 with UV Light

  • Khan, Mohammad Mansoob;Kalathil, Shafeer;Lee, Jin-Tae;Cho, Moo-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1753-1758
    • /
    • 2012
  • A novel, efficient and controlled protocol for the synthesis and enhanced photocatalytic activity of $Au@TiO_2$ nanocomposite is developed. $TiO_2$ (P25) was pretreated by employing UV light (${\lambda}$ = 254 nm) and the pretreated $TiO_2$ was uniformly decorated by gold nanoparticles (AuNPs) in presence of sodium citrate and UV light. UV pretreatment makes the $TiO_2$ activated, as electrons were accumulated within the $TiO_2$ in the conduction band. These accumulated electrons facilitate the formation of AuNPs which were of very small size (2-5 nm), similar morphology and uniformly deposited at $TiO_2$ surface. It leads to formation of stable and crystalline $Au@TiO_2$ nanocomposites. The rapidity (13 hours), monodispersity, smaller nanocomposites and easy separation make this protocol highly significant in the area of nanocomposites syntheses. As-synthesized nanocomposites were characterized by TEM, HRTEM, TEM-EDX, SAED, XRD, UV-visible spectrophotometer and zeta potential. Dye degradation experiments of methyl orange show that type I ($Au@TiO_2$ nanocomposites in which $TiO_2$ was pretreated with UV light) has enhanced photocatalytic activity in comparison to type II ($Au@TiO_2$ nanocomposites in which $TiO_2$ was not pretreated with UV light) and $TiO_2$ (P25). This shows that pretreatment of $TiO_2$ provides type I a better catalytic activity.

Inverted CdSe@ZnS Quantum Dots Light-Emitting Diode using Low-Work Function Polyethylenimine Ethoxylated (PEIE) modified ZnO

  • Kim, Choong Hyo;Kim, Hong Hee;Hwang, Do Kyung;Suh, Kwang S;Park, Cheol Min;Choi, Won Kook
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.148-148
    • /
    • 2015
  • Over the past several years, Colloidal core/shell type quantum dots lighting-emitting diodes (QDLEDs) have been developed for the future of optoelectronic applications. An inverted-type quantum-dot light-emitting-diode (QDLED), employing low work function organic material polyethylenimine ethoxylated(PEIE) (<10 nm)[1] modified ZnO nanoparticles (NPs) as electron injection and transport layer, was fabricated by all solution processing method, instead of electrode in the device. The PEIE surface modifier incorporated on the top of the ZnO NPs film, facilitates the enhancement of both electorn injection into the CdSe-ZnS QD emissive layer by lowering the workfunction of ZnO from 3.58eV to 2.87eV and charge balance on the QD emitter. In this inverted QDLEDs, blend of poly (9,9-di-n-octyl-fluorene-alt-benzothiadiazolo) and poly(N,N'-bis(4-butylphenyl)-N,N'-bis(phenyl)benzidine] are used as hole transporting layer (HTL) to improve hole transporting property. At the operating voltage of 7.5 V, the QDLED device emitted spectrally orange color lights with high luminance up to 11110 cd/m2, and showed current efficiency of 2.27 cd/A.[2]

  • PDF

Flexible 3D ZnO/Polymer Composite by Simple-Step Growth Processing for Highly Photocatalytic Performance

  • Lee, Hyun Uk;Park, So Young;Seo, Jung Hye;Son, Byoungchul;Lee, Jouhahn
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.412-412
    • /
    • 2014
  • Zinc oxide (ZnO) is one of the most powerful materials for purifying organic pollutants using photocatalytic activity. In this study, we have introduced a novel method to design highly photoreactive flexible 3 dimensional (3D) ZnO nanocomposite [F-ZnO-m (m: reaction time, min)] by electrospinning and simple-step ZnO growth processing (one-step ZnO seed coating/growth processing). Significantly, the F-ZnO-m could be a new platform (or candidate) as a photocatalytic technology for both morphology control and large-area production. The highest photocatalytic degradation rate ([k]) was observed for F-ZnO-m at 2.552 h-1, which was 8.1 times higher than that of ZnO nanoparticles (NPs; [k] = 0.316 h-1). The enhanced photocatalytic activity of F-ZnO-m may be attributed to factors such as large surface area. The F-ZnO-m is highly recyclable and retained 98.6% of the initial decolorization rate after fifteen cycles. Interestingly, the F-ZnO-m samples show very strong antibacterial properties against both Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) after exposure to UV-light for 30 min. The antibacterial properties of F-ZnO-m samples are more effective than those of ZnO NPs. More than 96.6% of the E. coli is sterilized after ten cycles. These results indicate that F-ZnO-m samples might have utility in several promising applications such as highly efficient water/air treatment and inactivation of pathogenic microorganisms.

  • PDF

Enhanced Electrocatalytic Activity of Platinized Carbon Electrode via NaBH4 Treatment (NaBH4 화학적 처리를 통한 백금화 카본 전극의 촉매반응 향상)

  • Yun, Changsuk;Hwang, Seongpil
    • Applied Chemistry for Engineering
    • /
    • v.31 no.5
    • /
    • pp.581-584
    • /
    • 2020
  • The effect of a chemical pretreatment on the surface carbon was investigated using a scanning electron microscope (SEM) and electrochemical methods. Primitive carbon has a reducing power likely due to incompletely oxidized functional groups on the surface. We aim to control this reducing power by chemical treatment and apply for the spontaneous deposition of nanoparticles (NPs). Highly ordered pyrolytic graphite (HOPG) was initially treated with a reducing agent, NaBH4 or an oxidizing agent, KMnO4, for 5 min. Subsequently, the pretreated carbon was immersed in a platinum (Pt) precursor. Unexpectedly, SEM images showed that the reducing agent increased spontaneous PtNPs deposition while the oxidizing agent decreased Pt loading more as compared to that of using bare carbon. However, the amount of Pt on the carbon obviously decreased by NaBH4 treatment for 50 min. Secondly, spontaneous reduction on pretreated glassy carbon (GC) was investigated using the catalytic hydrogen evolution reaction (HER). GC electrode treated with NaBH4 for a short and long time showed small (onset potential: -640 mV vs. MSE) and large overpotential for the HER, respectively. Although the mechanism is unclear, the electrochemistry results correspond to the optical data. As a proof-of-concept, these results demonstrate that chemical treatments can be used to design the shapes and amounts of deposited catalytic metal on carbon by controlling the surface state.