• 제목/요약/키워드: nanoparticle array

검색결과 31건 처리시간 0.031초

플라즈모닉 흡수체를 위한 금속 나노입자 주기구조 제작 기술 (Periodically Aligned Metal Nanoparticle Array for a Plasmonic Absorber and Its Fabrication Technique)

  • 최민정;류윤하;배규영;강구민;김경식
    • 한국광학회지
    • /
    • 제28권6호
    • /
    • pp.361-365
    • /
    • 2017
  • 본 논문은 협대역의 플라즈모닉 흡수체 구현을 위한 금속 나노입자 주기구조 설계 및 제작에 관한 연구다. 제안된 플라즈모닉 흡수체의 상단 금속 나노입자는 주기적으로 홈이 파여있는 템플릿을 이용하여 전자빔 증착 후, 열처리하는 제작 기술로 형성하였다. 주기적 홈 템플릿 위에 제작된 금속 나노입자를, 따로 제작한 33 nm 두께의 $Al_2O_3$가 스퍼터 가공된 200 nm 두께의 금속 반사판-기판 상단에 옮기는 방법을 통해 플라즈모닉 흡수체를 제작하였다. 제작된 금속 나노입자는 평균 지름 46 nm, 주기 76 nm의 크기를 가졌다. 광학 측정 결과, 제작된 플라즈모닉 흡수체는 중심파장 572 nm, 반값전폭 109.9 nm의 플라즈모닉 공명 흡수를 나타내었다.

나노입자 집속 마스크를 이용한 나노입자 패턴 형성 (Nanoparticle patterning using nanoparticle focusing mask)

  • 유석범;이희철;김형철;최만수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1713-1717
    • /
    • 2008
  • We have developed a nanoparticle focusing mask which can generate particle arrays directly on the large area with high resolution. Using this mask, nanomaterials are precisely deposited onto desired positions on a substrate surface. We obtained various sizes of arrays ranging from 80 nm to 6 ${\mu}m$ with silver and copper nanoparticles that are generated by a spark discharge and an evaporation-condensation method. The feather size is much smaller than that of mask openings due to the focusing effects, like electrostatic lens, caused by charge or electric potential on insulator mask surface, which also prevent a mask clogging. The particle array size depends on the size of mask open patterns and focusing effects near the mask relate to ion flow rate and electric potential. We have demonstrated that diverse size of arrays with high resolution could be obtained repeatedly using the same sized mask in atmosphere.

  • PDF

나노입자 배열을 이용한 분자 검출 (Detection of Molecules using the Nanoparticle Arrays)

  • 하동한;김상훈;윤용주;박형주;윤완수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1617-1622
    • /
    • 2008
  • We report a new molecular detection process which measures the changes in the plasmon resonance peaks of periodic Au nanoparticle arrays fabricated using the electron beam lithography. As the Au nanoparticle arrays are modified by the chemical reaction in solutions having various concentrations of a target molecule, both the position and intensity of the plasmon peak change in proportion to the concentration of the target molecule. We expect that the process developed in this work can be employed for fine tuning of the plasmon peak wavelength and also for the optical detection of various kinds of molecules. Moreover, this method may improve the measurement accuracy compared with existing approaches that use only one change (peak wavelength or peak intensity) as a readout value for the molecular detection.

  • PDF

광 증폭용 플라즈모닉 나노구조 제작을 위한 은 나노입자 증착 연구 (A Study on the Silver Nanoparticle Deposition for Optical Amplification)

  • 강지숙;김준현;정명영
    • 마이크로전자및패키징학회지
    • /
    • 제25권1호
    • /
    • pp.11-15
    • /
    • 2018
  • 본 논문에서는 UV 나노임프린트 공정으로 제작한 나노 콘 형태의 구조물 위에 은 나노 입자를 증착하여 광증폭용 구조 형태를 제작하고자 하였다. 은 나노 입자의 증착은 하부 기판 표면의 젖음 특성에 따른 액적의 증발 거동을 이용하였으며, 기판 하부 열에너지의 차이에 따라서 액적 중심부부터 가장자리까지 증착 형태가 변화함을 확인하였다. 제작한 구조 형태와 유사한 구조를 시간영역 유한차분(FDTD)법을 통해 광 특성을 예측하여, 최종적으로 제작한 구조의 은나노 입자 부근에 에너지가 집중되는 결과를 확인하였다.

Double Resonance Perfect Absorption in a Dielectric Nanoparticle Array

  • Hong, Seokhyeon;Lee, Young Jin;Moon, Kihwan;Kwon, Soon-Hong
    • Current Optics and Photonics
    • /
    • 제1권3호
    • /
    • pp.228-232
    • /
    • 2017
  • We propose a reflector-type perfect absorber with double absorption lines using electric and magnetic dipoles of Mie resonances in an array of silicon nanospheres on a silver substrate. In the visible range, hundreds of nanometer-sized nanospheres show strong absorption lines up to 99%, which are enhanced by the interference between Mie scattering and reflections from the silver substrate. The air gap distance between the silicon particles and silver substrate controls this interference, and the absorption wavelengths can be controlled by adjusting the diameter of the silicon particles over the entire range of visible wavelengths. Additionally, our structure has a filling factor of 0.322 when the absorbance is nearly 100%.

Development of Array-based Technology for Detection of HAV Using Gold-DNA Probes

  • Wan, Zhixiang;Wang, Yefu;Li, Shawn Shun-Cheng;Duan, Lianlian;Zhai, Jianxin
    • BMB Reports
    • /
    • 제38권4호
    • /
    • pp.399-406
    • /
    • 2005
  • A sensitive method for detection of Hepatitis A virus (HAV) by utilizing gold-DNA probe on an array was developed. Amino- modified oligodeoxynucleotides at the 5' position were arrayed on an activated glass surface to function as capture probes. Sandwich hybridization occurred among capture probes, the HAV amplicon, and gold nanoparticle-supported oligonucleotide probes. After a silver enhancement step, signals were detected by a standard flatbed scanner or just by naked eyes. As little as 100 fM of HAV amplicon could be detected on the array. Therefore, the array technology is an alternative to be applied in detection of HAV due to its low-cost and high-sensitivity.

밀집된 금속 나노 입자 레이어의 광학 특성 (Enhanced Light Transmittance of Densely Packed Metal Nanoparticle Layers)

  • 전현지;최진일
    • 한국재료학회지
    • /
    • 제30권12호
    • /
    • pp.701-708
    • /
    • 2020
  • Irradiation of the metal nanoparticles causes local plasmon resonance in a specific wavelength band, which can improve the absorption and scattering properties of a structure. Since noble metal nanoparticles have better resonance effects than those of other metals, it is easy to identify plasmonic reactions and this is advantageous to find the optical tendency. Compared to having a particle gap or randomly arranged particle structures, densely and evenly packed structures can exhibit more uniform optical properties. Using the uniform properties, the structure can be applied to optical filtering applications. Therefore, in this paper, validation tests about metal nanoparticles and thin film structures are conducted for more accurate analysis. The optical properties of monolayer and bilayer noble metal nanoparticle structures with different diameters, packed in a uniform array, are investigated and their optical trends are analyzed. In addition, a thin film structure under identical conditions as metal nanoparticle structure is evaluated to confirm the improved optical characteristics.

Ag 나노입자와 나노홀 배열구조를 이용한 초박형 단결정 Si 태양전지의 광흡수 증진 (Optical Absorption Enhancement for Ultrathin c-Si Solar Cells using Ag Nanoparticle and Nano-hole Arrays)

  • 김수정;조윤애;손아름;김동욱
    • Current Photovoltaic Research
    • /
    • 제4권2호
    • /
    • pp.64-67
    • /
    • 2016
  • We investigated the influences of Ag nanoparticle (NP) arrays and surface nanohole (NH) patterns on the optical characteristics of 10-${\mu}m$-thick c-Si wafers using finite-difference time-domain (FDTD) simulations. In particular, we comparatively studied the plasmonic effects of both monomer arrays (MA) and heptamer arrays (HA) consisting of identical Ag NPs. HA improved the optical absorption of the c-Si wafers in much wider wavelength range than MA, with the help of hybridized plasmon modes. The light trapping capability of the NH array pattern is superior to that of the Ag plasmonic NPs. We also found that the addition of the Ag HA on the wafers with surface NH patterns further enhanced optical absorption: the expected short-circuit current density was as high as $34.96mA/cm^2$.