• 제목/요약/키워드: nanoparticle (NP)

검색결과 92건 처리시간 0.035초

첨가제 없이 제작된 나노구조 코발트 산화물 리튬이온 배터리 전극의 전기 화학적 특성 (Electrochemical Properties of Additive-Free Nanostructured Cobalt Oxide (CoO) Lithium Ion Battery Electrode)

  • 김주윤;박병남
    • 한국전기전자재료학회논문지
    • /
    • 제31권5호
    • /
    • pp.335-340
    • /
    • 2018
  • Transition metal oxide materials have attracted widespread attention as Li-ion battery electrode materials owing to their high theoretical capacity and good Li storage capability, in addition to various nanostructured materials. Here, we fabricated a CoO Li-ion battery in which Co nanoparticles (NPs) are deposited into a current collector through electrophoretic deposition (EPD) without binding and conductive agents, enabling us to focus on the intrinsic electrochemical properties of CoO during the conversion reaction. Through optimized Co NP synthesis and electrophoretic deposition (EPD), CoO Li-ion battery with 630 mAh/g was fabricated with high cycle stability, which can potentially be used as a test platform for a fundamental understanding of conversion reaction.

Metal Nanoparticles in the Template of Poly(2-ethyl-2-oxazoline)-block-Poly(${\varepsilon}$-caprolactone) Micelle

  • Park, Chi-Young;Rhue, Mi-Kyo;Lim, Jin-O;Kim, Chul-Hee
    • Macromolecular Research
    • /
    • 제15권1호
    • /
    • pp.39-43
    • /
    • 2007
  • The amphiphilic block copolymer (PEtOz-PCL) of poly(2-ethyl-2-oxazoline) (PEtOz) and poly(${\varepsilon}$-caprolactone) (PCL) formed spherical micellar structures with an average diameter of 26 nm in aqueous phase. Au and Pd nanoparticles with an average diameter of $2{\sim}3nm$ were prepared by using the PEtOz-PCL micelle consisting of a PEtOz shell and PCL core. The Au nanoparticles of PEtOz-PCL micelles in aqueous phase could be transferred into organic phase by using n-dodecanethiol. The use of the Pd-NP/PEtOz-PCL micelle as a nanoreactor for Suzuki cross-coupling reaction was investigated.

Assembly of Gold Nanoparticles on Electrospun Polymer Nanofiber Film for SERS Applications

  • Wang, Li;Sun, Yujing;Wang, Jiku;Li, Zhuang
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권1호
    • /
    • pp.30-34
    • /
    • 2014
  • We report a novel approach for fabricating active surface-enhanced Raman scattering (SERS) substrate for sensitive detection. This approach is based on the assembling of gold nanoparticles (AuNPs) onto the electrospun polycaprolactone (PCL) nanofiber film. The hydrophobic surface of PCL nanofiber film was pretreated using UV-inducing graft polymerization with acrylic acid. Afterwards this PCL nanofiber film was incubated with the AuNP solution to promote the assembly of AuNPs onto the PCL nanofibers and the formation of SERS active substrate. 4-aminothiophenol (4-ATP) molecule was used as a test probe for SERS experiments, indicating that the substrate has high sensitivity to SERS response. Our method has great advantage in term of environment-friendly synthesis, large-scale, high stability and good reproducibility. This highly active SERS substrate can be employed to detect the drug molecule, 2-thiouracil.

Coffee cultivation techniques, impact of climate change on coffee production, role of nanoparticles and molecular markers in coffee crop improvement, and challenges

  • Naik, Banavath Jayanna;Kim, Seong-Cheol;Seenaiah, Ragula;Basha, Pinjari Akabar;Song, Eun Young
    • Journal of Plant Biotechnology
    • /
    • 제48권4호
    • /
    • pp.207-222
    • /
    • 2021
  • Coffee is the most frequently consumed functional beverage world wide. The average daily coffee consumption is increasing. This crop, which plays an important role in the global economy is under great threat from climate change. To with stand the current climate change, farmers have to learn crop cultivation techniques, strategies to protect crops from diseases, and understand which type of seed varieties to use to avoid crop loss. The present review briefly discusses the coffee cultivation techniques, impact of climate changes on coffee production, processing techniques of coffee, and the importance of coffee in our society, including its chemical composition and prevention against, major diseases. Furthermore, the importance and role of advanced nanotechnology along with molecular approaches for coffee crop improvement and facing challenges are explained.

표고버섯의 원형질체 분리 최적화와 RNPs/나노파티클 복합체 형성 (Optimization of Protoplast Isolation and Ribonucleoprotein/Nanoparticle Complex Formation in Lentinula edodes)

  • 김민식;류호진;오민지;임지훈;이종원;오연이
    • 한국버섯학회지
    • /
    • 제20권3호
    • /
    • pp.178-182
    • /
    • 2022
  • 버섯의 오랜 역사에도 불구하고 버섯의 유전적 기능과 분자유전학을 응용한 신품종 개발에 대한 연구는 크게 부족한 상황이다. 그러나 최근 유전자 가위인 CRISPR/Cas를 이용한 새로운 유전자 교정 기술이 개발됨에 따라 버섯 연구에서 이 기술을 이용한 다양한 시도가 이루어지고 있다. 특히 선택의 용이성을 위해 외래 유전자 삽입 없이도 고효율로 유전자 편집이 가능한 RNPs를 활용한 연구가 활발히 진행되고 있다. 그러나 RNPs는 원형질체의 세포막을 통과하기에 Cas9이 너무 거대하고 guide RNA가 쉽게 파괴된다는 단점을 가지고 있다. 이러한 단점을 극복하기 위하여 세포막 통과에 용이한 미네랄 성분인 CaP와 PAA를 조합하여 Nanoparticle을 형성함으로써 극복하고자 했다. 표고버섯 단핵 균주인 산조705-13을 이용하여 원형질체 분리에 적합한 Osmotic buffer를 찾기 위하여 0.6M과 1.2M의 Sucrose, Sorbitol, Mannitol, KCl을 처리하였고 그 결과 0.6M Sucrose가 가장 적합한 osmotic buffer임을 확인하였다. 또한 CaP으로 RNPs와 Nanoparticle 복합체를 형성하고 이 복합체가 RNase A로부터 RNPs의 기능을 온전히 보호하는 것을 확인할 수 있었다.

Effect of Chemical Stabilizers in Silver Nanoparticle Suspensions on Nanotoxicity

  • Bae, Eun-Joo;Park, Hee-Jin;Park, Jun-Su;Yoon, Je-Yong;Kim, Young-Hun;Choi, Kyung-Hee;Yi, Jong-Heop
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권2호
    • /
    • pp.613-619
    • /
    • 2011
  • Colloidal silver nanoparticles (AgNPs) have been commercialized as the typically stabilized form via the addition of a variety of surfactants or polymers. Herein, to examine the effects of stabilizing AgNPs in suspension, we modified the surface of bare AgNPs with four type of surfactants (NaDDBS, SDS, TW80, CTAB) and polymers (PVP, PAA, PAH, CMC). The modified AgNPs was applied to compare suspension stability and nanotoxicity test using Escherichia coli (E. coli) as a model organism. Modification of AgNPs surface using chemical stabilizer may be not related with molecular weight, but chemical structure such as ionic state and functional group of stabilizer. In this study, it is noteworthy that AgNPs modified with a cationic stabilizer (CTAB, PAH) were importantly toxic to E. coli, rather than anionic stabilizers (NaDDBS, SDS). Comparing similar anionic stabilizer, i.e., NaDDBS and SDS, the result showed that lipophilicity of chemical structure can affect on E. coli, because NaDDBS, which contains a lipophilic benzene ring, accelerated the cytotoxicity of AgNPs. Interestingly, none of the stabilizers tested, including biocompatible nonionic stabilizers (i.e., TW80 and cellulose) caused a reduction in AgNP toxicity. This showed that toxicity of AgNPs cannot be reduced using stabilizers.

Indium-Tin-Oxide 나노입자 인쇄박막의 pH sensor 응용에 대한 연구 (pH Sensor Application of Printed Indium-Tin-Oxide Nanoparticle Films)

  • 이창한;노재하;안상수;이상태;서동민;이문진;장지호
    • 센서학회지
    • /
    • 제31권2호
    • /
    • pp.85-89
    • /
    • 2022
  • We investigated a pH sensor using an Indium tin oxide (ITO) nanoparticle (NP) film printed on a flexible substrate. First, the printing precision and mechanical stability of the ITO-printed film were investigated. In particular, the factors that influence the crystallinity of ITO films were studied using X-ray diffraction pattern analysis. The response of the ITO pH sensor was calibrated using a series of standard pH solutions (pH 3-11). The pH values of various specimens were measured using an ITO pH sensor, and the results were compared with those of various pH measurement methods. As a result of the experiment, the maximum error was approximately ± 0.04 pH (0.4 %) at pH 9, which indicated that the ITO pH sensor is highly suitable for pH measurement. Finally, we used the ITO pH sensor to the measure of general specimens such as solvents and beverages and compared the results in comparison with those obtained from several conventional methods.

Gold Nanoparticle and Polymerase Chain Reaction (PCR)-Based Colorimetric Assay for the Identification of Campylobacter spp. in Chicken Carcass

  • Seung-Hwan Hong;Kun-Ho Seo;Sung Ho Yoon;Soo-Ki Kim;Jungwhan Chon
    • 한국축산식품학회지
    • /
    • 제43권1호
    • /
    • pp.73-84
    • /
    • 2023
  • Campylobacteriosis is a common cause of gastrointestinal disease. In this study, we suggest a general strategy of applying gold nanoparticles (AuNPs) in colorimetric biosensors to detect Campylobacter in chicken carcass. Polymerase chain reaction (PCR) was utilized for the amplification of the target genes, and the thiolated PCR products were collected. Following the blending of colloid AuNPs with PCR products, the thiol bound to the surface of AuNPs, forming AuNP-PCR products. The PCR products had a sufficient negative charge, which enabled AuNPs to maintain a dispersed formation under electrostatic repulsion. This platform presented a color change as AuNPs aggregate. It did not need additional time and optimization of pH for PCR amplicons to adhere to the AuNPs. The specificity of AuNPs of modified primer pairs for mapA from Campylobacter jejuni and ceuE from Campylobacter coli was activated perfectly (C. jejuni, p-value: 0.0085; C. coli, p-value: 0.0239) when compared to Salmonella Enteritidis and Escherichia coli as non-Campylobacter species. Likewise, C. jejuni was successfully detected from artificially contaminated chicken carcass samples. According to the sensitivity test, at least 15 ng/μL of Campylobacter PCR products or 1×103 CFU/mL of cells in the broth was needed for the detection using the optical method.

New formulated "DOX-MTX-loaded Nanoparticles" Down-regulate HER2 Gene Expression and Improve the Clinical Outcome in OSCCs Model in Rat: the Effect of IV and Oral Modalities

  • Abbasi, Mehran Mesgari;Monfaredan, Amir;Hamishehkar, Hamed;Jahanban-Esfahlan, Rana
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권21호
    • /
    • pp.9355-9360
    • /
    • 2014
  • Background: Oral squamous cell carcinoma (OSCC) remains as one of the most difficult malignancies to control because of its high propensity for local invasion and cervical lymph node dissemination. In this study, we evaluate the efficacy of our novel pH and temperature sensitive doxorubicin-methotrexate-loaded nanoparticles (DOX-MTX NP) in affecting HER2 expression profile in OSCC model in rat. Results: DOX-MTX- nanoparticle complexes caused significant decrease in mRNA level of HER2 compared to untreated cancers (p<0.05) and this finding was more pronounced with the IV mode (p<0.000). Surprisingly, HER2 mRNA was not affected in DOX treated as compared to the control group (p>0.05). On the other hand, in the DOX-MTX NP treated group, fewer tumors characterized with advanced stage and decreased HER2 paralleled improved clinical outcome (P<0.05). Moreover, the effectiveness of the oral route in the group treated with nanodrug accounted for the enhanced bioavailability of nanoparticulated DOX-MTX compared to free DOX. Furthermore, there was no significant difference in mRNA level of HER2 (p>0.05). Conclusions: Influence of HER2 gene expression is a new feature and mechanism of action observed only in dual action DOX-MTX-NPs treated groups. Down-regulation of HER2 mRNA as a promising marker and prognosticator of OSCC adds to the cytotoxic benefits of DOX in its new formulation. Both oral and IV application of this nanodrug could be used, with no preferences in term of their safety or toxicity. As HER2 is expressed abundantly by a wide spectrum of tumors, i DOX-MTX NPs may be useful for a wide-spectrum of lesions. However, molecular mechanisms underlying HER2 down regulation induced by DOX-MTX NPs remain to be addressed.