• 제목/요약/키워드: nanometer

검색결과 595건 처리시간 0.024초

Vacuum Carbonization of Nanometer Tungsten Powder with Carbon Black

  • Luo, Ji;Lin, Tao;Guo, Zhi-meng;Jia, Chengchang
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.442-443
    • /
    • 2006
  • Vacuum carbonization of nanometer tungsten powder was investigated in a simple designed apparatus. An X-Y recorder was used to plot differential thermal analysis (DTA) curves to determine starting temperature of carbonization of four samples with different specific surface area. The product was detected by X-ray Diffraction (XRD) and small angle X-ray scattering (SAXS). The results show that finer tungsten powder has lower starting temperature of carbonization. Tungsten powder, which BET surface area is $32.97m^2/g$, is completely carbonized to tungsten carbide at $1050^{\circ}C$, although the starting temperature is $865^{\circ}C$. Particle grows sharply before carbonization.

  • PDF

주사형 맥스웰 응력 현미경을 이용한 박막의 Nanometer-scale 이미지 (Nanometer-scale Imaging in Thin Films by Scanning Maxwell-stress Microscopy)

  • 신훈규;유승엽;권영수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1998년도 추계학술대회 논문집
    • /
    • pp.133-136
    • /
    • 1998
  • The scanning Maxwell-stress microscopy (SMM) is a dynamic noncontact electric force microscopy that allows simultaneous access to the electrical properties of molecular system such as surface potential, surface charge, dielectric constant and conductivity along with the topography. Here we report our recent results of its application to nanoscopic study of domain structures and electrical functionality in organic thin films prepared by the Langmuir-Blodgett technique.

  • PDF

나노미터 크기의 임의 형상을 제작하기 위한 새로운 리소그래피 기술 (New lithography technology to fabricate arbitrary shapes of patterns in nanometer scale)

  • 홍진수;김창교
    • 한국산학기술학회논문지
    • /
    • 제5권3호
    • /
    • pp.197-203
    • /
    • 2004
  • 나노미터 크기의 임의형상 패턴을 새기기 위하여 노광기술이 사용된다. 광노광에서 자외선과 엑스레이 같은 전자기파가 나노미터 크기로 형상을 새긴 마스크 위에 조사되면 회절현상은 필연적으로 발생하며 마스크의 상이 불명확하게 웨이퍼 위에 맺히도록 한다. 볼록렌즈만이 프리어변환기 역할을 한다고 알려져 있으며 마스크 위에 패턴의 크기가 전자기파의 파장에 비교하여 매우 클 때에도 볼록렌즈를 사용하면 프리어변환시키는 것이 가능하다. 본 논문에서 설명하는 방법으로 마스크를 준비하여 렌즈 앞에 놓고 레이저 빔으로 조사하면 프리어 평면이라 알려진 평면 위에서만 나노미터 크기의 패턴이 형성된다. 이 방법은 매우 단순한 장치로 구성되어 있고, 현재 혹은 차세대 노광인 자외선/극자외선 및 전자투사노광으로 제작한 최소선폭과 비교해 볼 때 손색이 없다. 여기서는 프리어광학을 이용하여 이론적인 연구결과를 보이고 있지만 가까운 장래에 실험결과로 이론적인 접근을 증명할 수 있을 것이다.

  • PDF

A 32nm and 0.9V CMOS Phase-Locked Loop with Leakage Current and Power Supply Noise Compensation

  • Kim, Kyung-Ki;Kim, Yong-Bin
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제7권1호
    • /
    • pp.11-19
    • /
    • 2007
  • This paper presents two novel compensation circuits for leakage current and power supply noise (PSN) in phase locked loop (PLL) using a nanometer CMOS technology. The leakage compensation circuit reduces the leakage current of the charge pump circuit which becomes more serious problem due to the thin gate oxide and small threshold voltage in nanometer CMOS technology and the PSN compensation circuit decreases the effect of power supply variation on the output frequency of VCO. The PLL design is based on a 32nm predictive CMOS technology and uses a 0.9V power supply voltage. The simulation results show that the proposed PLL achieves a 88% jitter reduction at 440MHz output frequency compared to the PLL without leakage compensator and its output frequency drift is little to 20% power supply voltage variations. The PLL has an output frequency range of $40M{\sim}725MHz$ with a multiplication range of 11023, and the RMS and peak-to-peak jitter are 5ps and 42.7ps, respectively.

초정밀 유정압 베어링 이송 테이블의 나노미터 위치결정 제어에 관한 연구 (On Nanometer Positioning Control of Ultra-precision Hydrostatic Bearing Guided Feeding Table)

  • 심종엽;박천홍;송창규
    • 한국정밀공학회지
    • /
    • 제30권12호
    • /
    • pp.1313-1320
    • /
    • 2013
  • An ultraprecision multi-axis machine tool has been designed and developed in our laboratory. The machine tool has four moving axes which are composed of three linear axes and one rotational axis. It has a gantry type structure and the Z-axis is on the X-axis and the C-axis, on which a workpiece is located, is inside the Y-axis. This paper shows control performance improving method and procedure for the ultra-precision positioning control of a hydrostatic bearing guided linear axis. Through improvements of electrical and mechanical components for the control system such as control electronics and oil pumping systems, the control disturbing noise is decreased. Also by the frequency domain analysis of control system those problem-making system components are identified and modified with analytical methods. The controller is analyzed and designed from frequency domain data and system information. In the experimental control results the nanometer order control result is successfully presented.

Reflectivity Control at Substrate / Photoresist Interface by Inorganic Bottom Anti-Reflection Coating for Nanometer-scaled Devices

  • Kim, Sang-Yong;Kim, Yong-Sik
    • Transactions on Electrical and Electronic Materials
    • /
    • 제15권3호
    • /
    • pp.159-163
    • /
    • 2014
  • More accurate CD (Critical Dimension) control is required for the nanometer-scaled devices. However, since the reflectivity between substrate and PR (Photoresist) becomes higher, the CD (Critical Dimension) swing curve was intensified. The higher reflectivity also causes PR notching due to the pattern of sub-layer. For this device requirement, it was optimized for the thickness, refractive index(n) and absorption coefficient(k) in the bottom anti-reflective coating(BARC; SiON) and photoresist with the minimum reflectivity. The computational simulated conditions, which were determined with the thickness of 33 nm, n of 1.89 and k of 0.369 as the optimum condition, were successfully applied to the experiments with no standing wave for the 0.13um-device. At this condition, the lowest reflectivity was 0.44%. This optimum condition for BARC SiON film was applied to the process for 0.13um-device. The optimum SiON film as BARC to PR and sub-layer could be formed with the accurate CD control and no standing waver for the nanometer-scaled semiconductor manufacturing process.