• 제목/요약/키워드: nanometer

검색결과 595건 처리시간 0.032초

Dynamics of Nanopore on the Apex of the Pyramid

  • Choi, Seong-Soo;Yamaguchi, Tokuro;Park, Myoung-Jin;Kim, Sung-In;Kim, Kyung-Jin;Kim, Kun-Ho
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.187-187
    • /
    • 2012
  • In this report, the plasmonic nanopores of less than 5 nm diameter were fabricated on the apex of the pyramidal cavity array. The metallic pyramidal pit cavity can also utilized as the plasmonic bioreactor, and the fabricated Au or Al metallic nanopore can provide the controllable translocation speed down using the plasmonic optical force. Initially, the SiO2 nanopore on the pyramidal pit cavity were fabricated using conventional microfabrication techniques. Then, the metallic thin film was sputter-deposited, followed by surface modification of the nanometer thick membrane using FESEM, TEM and EPMA. The huge electron intensity of FESEM with ~microsecond scan speed can provide the rapid solid phase surface transformation. However, the moderate electron beam intensity from the normal TEM without high speed scanning can only provide the liquid phase surface modification. After metal deposition, the 100 nm diameter aperture using FIB beam drilling was obtained in order to obtain the uniform nano-aperture. Then, the nanometer size aperture was reduced down to ~50 nm using electron beam surface modification using high speed scanning FESEM. The followed EPMA electron beam exposure without high speed scanning presents the reduction of the nanosize aperture down to 10 nm. During these processes, the widening or the shrinking of the nanometer pore was observed depending upon the electron beam intensity. Finally, using 200 keV TEM, the diameter of the nanopore was successively down from 10 nm down to 1.5 nm.

  • PDF

양자 현상을 고려한 나노미터 스케일 MUGFETS의 C-V 특성 (C-V Characteristics in Nanometer Scale MuGFETs with Considering Quantum Effects)

  • 윤세레나;유종근;박종태
    • 대한전자공학회논문지SD
    • /
    • 제45권11호
    • /
    • pp.1-7
    • /
    • 2008
  • 본 연구에서는 양자 현상을 고려한 나노미터 MuGFET의 C-V 특성을 분석하기 위하여 2차원 Poisson-$Schr{\ddot{o}}dinger$ 방정식을 self-consisnt하게 풀 수 있는 시뮬레이터를 구현하였다. 소자 시뮬레이터를 이용하여 양자 현상으로 인한 소자크기와 게이트 구조에 따른 게이트-채널 커패시턴스 특성을 분석하였다. 소자의 크기가 감소할수록 단위 면적당 게이트-채널 커패시턴스는 증가하였다. 그리고 게이트 구조가 다른 소자에서는 게이트-채널 커패시턴스가 유효게이트 수가 증가할수록 감소하였다. 이런 결과를 실리콘 표면의 전자농도 분포와 인버전 커패시턴스로 설명하였다 또한 인버전 커패시턴스로부터 소자의 크기 및 게이트 구조에 따른 inversion-layer centroid 길이도 계산하였다.

열 반응을 이용한 나노사이즈 마크형성 (Manometer Scale Mark Formation using Thermal Reaction For Storage Application)

  • 정문일;김주호;황인오;김현기;배재철;박인식;마사시 구와하라;준지 토미나가
    • 정보저장시스템학회논문집
    • /
    • 제1권2호
    • /
    • pp.127-131
    • /
    • 2005
  • We report a nanometer scale mark formation using a $PtO_x$ thin film or a TbFeCo rare-earth transition metal film and the mechanism. The multi-layer samples($ZnS-SiO_2/PtOx/ZNS-SiO_2,\;ZnS-SiO_2/TbFeCo/ZnS-SiO_2$) were prepared with a magnetron sputtering method on a polycarbonate or a glass substrate. By laser irradiation of approximately a few nanoseconds, nanometer scale marks were fabricated. During the fabrication process, the thin films were thermally reacted or inter-diffused during the laser irradiation. 75 nm bubble marks in the PtOx multi-layer sample by an approximately 4-ns laser irradiation. Inside the bubble mark, Pt particles with a few nanometer sizes are distributed. The $50{\sim}100$ nm bubble marks in the TbFeCo multi-layer sample by a few nanosecond laser irradiations. We will report the detail structure of the samples, the bubble mark formation process and the mechanism.

  • PDF

Substrate roughness induces the development of defective E-cadherin junctions in human gingival keratinocytes

  • Jin, Chengbiao;Lee, Gayoung;Oh, Changseok;Kim, Hyun Jung;Kim, Hyun-Man
    • Journal of Periodontal and Implant Science
    • /
    • 제47권2호
    • /
    • pp.116-131
    • /
    • 2017
  • Purpose: The entry of bacteria or harmful substances through the epithelial seal of human gingival keratinocytes (HGKs) in the junctional epithelium (JE) is blocked by specialized intercellular junctions such as E-cadherin junctions (ECJs). However, the influence of roughened substrates, which may occur due to apical migration of the JE, root planing, or peri-implantitis, on the development of the ECJs of HGKs remains largely unknown. Methods: HGKs were cultured on substrates with varying levels of roughness, which were prepared by rubbing hydrophobic polystyrene dishes with silicon carbide papers. The activity of c-Jun N-terminal kinase (JNK) was inhibited with SP600125 or by transfection with JNK short hairpin RNA. The development of intercellular junctions was analyzed using scanning electron microscopy or confocal laser scanning microscopy after immunohistochemical staining of the cells for E-cadherin. The expression level of phospho-JNK was assessed by immunoblotting. Results: HGKs developed tight intercellular junctions devoid of wide intercellular gaps on smooth substrates and on rough substrates with low-nanometer dimensions (average roughness $[Ra]=121.3{\pm}13.4nm$), although the ECJs of HGKs on rough substrates with low-nanometer dimensions developed later than those of HGKs on smooth substrates. In contrast, HGKs developed short intercellular junctions with wide intercellular gaps on rough substrates with mid- or high-nanometer dimensions ($Ra=505.3{\pm}115.3nm$, $867.0{\pm}168.6nm$). Notably, the stability of the ECJs was low on the rough substrates, as demonstrated by the rapid destruction of the cell junction following calcium depletion. Inhibition of JNK activity promoted ECJ development in HGKs. JNK was closely associated with cortical actin in the regulation of ECJs in HGKs. Conclusions: These results indicate that on rough substrates with nanometer dimensions, the ECJs of HGKs develop slowly or defectively, and that this effect can be reversed by inhibiting JNK.

Aspects of Nanotechnology In Inorganic Sunscreen Dispersions: Efficacy and Aesthetics

  • Arthur Georgalas
    • 대한화장품학회:학술대회논문집
    • /
    • 대한화장품학회 2003년도 IFSCC Conference Proceeding Book I
    • /
    • pp.97-97
    • /
    • 2003
  • Chemists must take into consideration more factors to formulate with inorganic sunscreens than many other active ingredients including organic sunscreens. Because the UV radiation attenuation grade particles of Titanium Dioxide and Zinc Oxide are in the nanometer range, the state of their dispersion in the product film on the skin governs their efficacy and aesthetics.(omitted)

  • PDF