• Title/Summary/Keyword: nanoimprint

Search Result 199, Processing Time 0.032 seconds

Contact Transfer Printing Using Bi-layer Functionalized Nanobio Interface for Flexible Plasmonic Sensing

  • Lee, Jihye;Park, Jiyun;Lee, Junyoung;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.413-413
    • /
    • 2014
  • In this paper, we present a fabrication method of functionalized gold nanostructures on flexible substrate that can be implemented for plasmonic sensing application. For biomolecular sensing, many researchers exploit unconventional lithography method like nanoimprint lithography (NIP), contact transfer lithography, soft lithography, colloidal transfer printing due to its usability and easy to functionalization. In particular, nanoimprint and contact transfer lithography need to have anti-adhesion layer for distinctive metallic properties on the flexible substrates. However, when metallic thin film was deposited on the anti-adhesion layer coated substrates, we discover much aggravation of the mold by repetitive use. Thus it would be impossible to get a high quality of metal nanostructure on the transferred substrate for developing flexible electronics based transfer printing. Here we demonstrate a method for nano-pillar mold and transfer the controllable nanoparticle array on the flexible substrates without an anti-adhesion layer. Also functionalization of gold was investigated by the different length of thiol applied for effectively localized surface plasmonic resonance sensing. First, a focused ion beam (FIB) and ICP-RIE are used to fabricate the nanoscale pillar array. Then gold metal layer is deposited onto the patterned nanostructure. The metallic 130 nm and 250 nm nanodisk pattern are transferred onto flexible polymer substrate by bi-layer functionalized contact imprinting which can be tunable surface energy interfaces. Different thiol reagents such as Thioglycolic acid (98%), 3-Mercaptopropionic acid (99%), 11-Mercaptoundecanoic acid (95%) and 16-Mercaptohexadecanoic acid (90%) are used. Overcoming the repeatedly usage of the anti-adhesion layer mold which has less uniformity and not washable interface, contact printing method using bi-layer gold array are not only expedient access to fabrication but also have distinctive properties including anti-adhesion layer free, functionalized bottom of the gold nano disk, repeatedly replicate the pattern on the flexible substrate. As a result we demonstrate the feasibility of flexible plasmonic sensing interface and anticipate that the method can be extended to variable application including the portable bio sensor via mass production of stable nanostructure array and other nanophotonic application.

  • PDF

Fabrication of UV imprint stamp using diamond-like carbon coating technology (Diamond-like carbon 코팅기술을 사용한 UV-임프린트 스탬프 제작)

  • JEONG JUN-HO;KIM KI-DON;SIM YOUNG-SUK;CHOI DAE-GEUN;CHOI JUNHYUK;LEE EUNG-SUG;LIM TAE-WOO;PARK SANG-HU;YANG DONG-YOL;CHA NAM-GOO;PARK JIN-GOO
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.167-170
    • /
    • 2005
  • The two-dimensional (2D) and three-dimensional (3D) diamond-like carbon (DLC) stamps for ultraviolet nanoimprint lithography (UV-NIL) were fabricated using two kinds of methods, which were a DLC coating process followed by the focused ion beam (FIB) lithography and the two-photon polymerization (TPP) patterning followed by nano-scale thick DLC coating. We fabricated 70 nm deep lines with a width of 100 nm and 70 nm deep lines with a width of 150 nm on 100 nm thick DLC layers coated on quartz substrates using the FIB lithography. 200 nm wide lines, 3D rings with a diameter of $1.35\;{\mu}m$ and a height of $1.97\;{\mu}m$, and a 3D cone with a bottom diameter of $2.88\;{\mu}m$ and a height of $1.97\;{\mu}m$ were successfully fabricated using the TPP patterning and DLC coating process. The wafers were successfully printed on an UV-NIL using the DLC stamp. We could see the excellent correlation between the dimensions of features of stamp and the corresponding imprinted features.

  • PDF

Fabrication and Characterization of an Antistiction Layer by PECVD (plasma enhanced chemical vapor deposition) for Metal Stamps (PECVD를 이용한 금속 스탬프용 점착방지막 형성과 특성 평가)

  • Cha, Nam-Goo;Park, Chang-Hwa;Cho, Min-Soo;Kim, Kyu-Chae;Park, Jin-Goo;Jeong, Jun-Ho;Lee, Eung-Sug
    • Korean Journal of Materials Research
    • /
    • v.16 no.4
    • /
    • pp.225-230
    • /
    • 2006
  • Nanoimprint lithography (NIL) is a novel method of fabricating nanometer scale patterns. It is a simple process with low cost, high throughput and resolution. NIL creates patterns by mechanical deformation of an imprint resist and physical contact process. The imprint resist is typically a monomer or polymer formulation that is cured by heat or UV light during the imprinting process. Stiction between the resist and the stamp is resulted from this physical contact process. Stiction issue is more important in the stamps including narrow pattern size and wide area. Therefore, the antistiction layer coating is very effective to prevent this problem and ensure successful NIL. In this paper, an antistiction layer was deposited and characterized by PECVD (plasma enhanced chemical vapor deposition) method for metal stamps. Deposition rates of an antistiction layer on Si and Ni substrates were in proportion to deposited time and 3.4 nm/min and 2.5 nm/min, respectively. A 50 nm thick antistiction layer showed 90% relative transmittance at 365 nm wavelength. Contact angle result showed good hydrophobicity over 105 degree. $CF_2$ and $CF_3$ peaks were founded in ATR-FTIR analysis. The thicknesses and the contact angle of a 50 nm thick antistiction film were slightly changed during chemical resistance test using acetone and sulfuric acid. To evaluate the deposited antistiction layer, a 50 nm thick film was coated on a stainless steel stamp made by wet etching process. A PMMA substrate was successfully imprinting without pattern degradations by the stainless steel stamp with an antistiction layer. The test result shows that antistiction layer coating is very effective for NIL.

Room Temperature Imprint Lithography for Surface Patterning of Al Foils and Plates (알루미늄 박 및 플레이트 표면 미세 패터닝을 위한 상온 임프린팅 기술)

  • Tae Wan Park;Seungmin Kim;Eun Bin Kang;Woon Ik Park
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.2
    • /
    • pp.65-70
    • /
    • 2023
  • Nanoimprint lithography (NIL) has attracted much attention due to its process simplicity, excellent patternability, process scalability, high productivity, and low processing cost for pattern formation. However, the pattern size that can be implemented on metal materials through conventional NIL technologies is generally limited to the micro level. Here, we introduce a novel hard imprint lithography method, extreme-pressure imprint lithography (EPIL), for the direct nano-to-microscale pattern formation on the surfaces of metal substrates with various thicknesses. The EPIL process allows reliable nanoscopic patterning on diverse surfaces, such as polymers, metals, and ceramics, without the use of ultraviolet (UV) light, laser, imprint resist, or electrical pulse. Micro/nano molds fabricated by laser micromachining and conventional photolithography are utilized for the nanopatterning of Al substrates through precise plastic deformation by applying high load or pressure at room temperature. We demonstrate micro/nanoscale pattern formation on the Al substrates with various thicknesses from 20 ㎛ to 100 mm. Moreover, we also show how to obtain controllable pattern structures on the surface of metallic materials via the versatile EPIL technique. We expect that this imprint lithography-based new approach will be applied to other emerging nanofabrication methods for various device applications with complex geometries on the surface of metallic materials.

A Study on Enhanced of Anti-scratch performance of Nanostructured Polymer Surface (고분자 나노 표면의 내스크래치 특성 향상 연구)

  • Yeo, N.E.;Cho, W.K.;Kim, D.I.;Jeong, M.Y.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.3
    • /
    • pp.41-46
    • /
    • 2017
  • In this study, rapid cooling method was proposed to improve the anti-scratch performance of anti-reflection film fabricated by nanoimprint lithography. Effects of cooling time on the mechanical properties and optical properties were evaluated. Pencil hardness measurements showed that anti-scratch performance enhanced as the cooling time increased while characterization on the optical property showed that reflectance on scratch increased as the cooling time increased. Therefore, it was concluded that the anti-scratch performance and optical properties are highly influenced by the cooling time. The observed results explained in terms of residual stress and free volume in polymeric materials.

Stacks of Two Different-sized Gold Nanodisks for Biological Imaging

  • Park, Ji-Su;Jeong, Dong-Geun;Lee, Tae-Geol;Wi, Jeong-Seop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.223.1-223.1
    • /
    • 2015
  • 본 연구에서는 지름이 다른 두 개의 디스크가 적층된 구조를 갖는 금 나노 구조체를 제작하고 그 광학적 특성에 대해 연구하였다. 나노임프린팅을 통하여 패턴된 폴리머 포어 어레이에 금 박막을 증착하고, 포어 내부에 증착된 금 나노구조체를 선택적으로 수거하는 방법을 이용하였다 [1]. 특히 금 증착 시, 빗각으로 증착 (oblique-angle deposition)을 하여 지름이 다른 두 개의 디스크가 적층되어 있는 구조를 형성하는 것이 가능하였다. 증착 각도의 조절을 통해 적층된 두 디스크의 지름 비율을 변화시킬 뿐만 아니라, 2차원 디스크 형태의 나노구조체부터 3차원 디쉬 형태의 구조체도 제작이 가능함을 확인하였다. 제안된 하향식 나노공정을 통하여 합성된 금 나노구조체를 이용하여 광열 전환(photothermal heat conversion)과 광 간섭성 단층 (optical coherence tomography) 측정을 진행하였고, 서로 다른 두 개의 디스크가 적층된 형태의 금 나노구조체는 상용 금 나노로드 (Au nanorod) 보다 높은 광 열 전환 효율을 갖을 뿐 아니라 우수한 OCT 이미징 특성을 보였다. 광열 전환 및 OCT 이미징 실험 결과는 각각 플라즈모닉 나노구조의 광흡수, 광산란 특성에 기반하므로, 본 연구를 통하여 제안된 금 나노구조체는 광흡수 및 광산란을 기반한 바이오이미징 나노프로브로 유용하게 사용될 수 있을 것으로 전망된다.

  • PDF

Numerical Analysis Based on Continuum Hypothesis in Nano-imprining process (연속체 개념에 기반한 나노 임프린트 공정해석 연구)

  • 김현칠;이우일
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.333-338
    • /
    • 2003
  • Nano-imprint lithography(NIL) is a polymer embossing technique, capable of transferring nano-scale patterns onto a thin film of thermoplastics such as polymethyl methacrylate(PMMA) using this parallel process. Feature size down 10 nm have been demonstrated. In NIL, the pattern is formed by displacing polymer material, which can be squeeze flow of a viscous liquid. Due to the size of the pattern, a thorough understood of the process through experiments may be very different. Therefore we nead to resort to numerical simulation on the embossing process. Generally, there are two ways of numerical simulation on nano-scale flow, namely top-down and bottom-up approach. Top-down approach is a way to simulate the flow assuming that polymer is a continuum. On the contrary, in the bottom-up approach, simulation is peformed using molecular dynamics(MD). However, as latter method is not feasible yet. we chose the top-down approach. For the numerical analysis, two dimensional moving grid was used since the moving grid can predict the flow front. Effects of surface tension as well as the slip at the boundary were also considered.

  • PDF

Effect of polymer substrates on nano scale hot embossing (나노 사이즈 hot embossing 공정시 폴리머의 영향)

  • Lee, Jin-Hyung;Kim, Yang-sun;Park, Jin-goo
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.71-71
    • /
    • 2003
  • Hot embossing has been widely accepted as an alternative to photolithography in generating patterns on polymeric substrates. The optimization of embossing process should be accomplished based on polymer substrate materials. In this paper, the effect of polymer substrates on nano scale hot embossing process was studied. Silicon molds with nano size patterns were fabricated by e-beam direct writing. Molds were coated with self-assembled monolayer (SAM) of (1, 1, 2.2H -perfluorooctyl)-trichlorosilane to reduce the stiction between mold and substrates. For an embossing, pressure of 55, 75 bur, embossing time of 5 min and temperature of above transition temperature were peformed. Polymethylmethacrylates (PMMA) with different molecular weights of 450,000 and 950,000, MR-I 8010 polymer (Micro Resist Technology) and polyaliphatic imide copolymer were applied for hot embossing process development in nano size. These polymers were spun coated on the Si wafer with the thickness between 150 and 200 nm. The nano size patterns obtained after hot embossing were observed and compared based on the polymer properties by scanning electron microscopy (SEM). The imprinting uniformity dependent on the Pattern density and size was investigated. Four polymers have been evaluated for the nanoimprint By optimizing the process parameters, the four polymers lead to uniform imprint and good pattern profiles. A reduction in the friction for smooth surfaces during demoulding is possible by polymer selection.

  • PDF

Maskless Fabrication of the Silicon Stamper for PDMS Nano/Micro Channel (나노/마이크로 PDMS 채널 제작을 위한 마스크리스 실리콘 스템퍼 제작 및 레오로지 성형으로의 응용)

  • 윤성원;강충길
    • Transactions of Materials Processing
    • /
    • v.13 no.4
    • /
    • pp.326-333
    • /
    • 2004
  • The nanoprobe based on lithography, mainly represented by SPM based technologies, has been recognized as a potential application to fabricate the surface nanosctructures because of its operational versatility and simplicity. However, nanoprobe based on lithography itself is not suitable for mass production because it is time a consuming method and not economical for commercial applications. One solution is to fabricate a mold that will be used for mass production processes such as nanoimprint, PDMS casting, and others. The objective of this study is to fabricate the silicon stamper for PDMS casting process by a mastless fabrication technique using the combination of nano/micro machining by Nanoindenter XP and KOH wet etching. Effect of the Berkovich tip alignment on the deformation was investigated. Grooves were machined on a silicon surface, which has native oxide on it, by constant load scratch (CLS), and they were etched in KOH solutions to investigate chemical characteristics of the machined silicon surface. After the etching process, the convex structures was made because of the etch mask effect of the mechanically affected layer generated by nanoscratch. On the basis of this fact, some line patterns with convex structures were fabricated. Achieved groove and convex structures were used as a stamper for PDMS casting process.

The Development of Uniform Pressurizing System for Extremely Large Area UV-NIL (극대면적 UV-NIL 공정에서의 균일 가압 시스템 개발)

  • Choi, Won-Ho;Shin, Yoon-Hyuk;Yeo, Min-Ku;Yim, Hong-Jae;Sin, Dong-Hun;Jang, Si-Youl;Jeong, Jay-Il;Lee, Kee-Sung;Lim, Si-Hyung
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1917-1921
    • /
    • 2008
  • Ultraviolet-nanoimprint lithography (UV-NIL) is promising technology for cost effectively defining micro/nano scale structure at room temperature and low pressure. In addition, this technology is fascinating because of it's possibility for high-throughput patterning without complex processes. However, to acquire good micro/nano patterns using this technology, there are some challenges such as uniformity and fidelity of patterns, etc. In this paper, we have focused on uniform contact mechanism and performed contact mechanics analysis. The dimension of the flexible sheet to get adequate uniform contact area has been obtained from contact mechanics simulation. Based on this analysis, we have made a uniform pressurizing device and confirmed its uniform pressurized zone using a pressure sensing paper.

  • PDF