• 제목/요약/키워드: nanofiltration membrane

검색결과 192건 처리시간 0.027초

Desalination performance of Al2O3 positively charged nanofiltration composite membrane

  • Li, Lian;Zhang, Xiating;Li, Lufen;Yang, Zhongcao;Li, Yuan
    • Membrane and Water Treatment
    • /
    • 제13권2호
    • /
    • pp.105-110
    • /
    • 2022
  • Al2O3 positively charged nanofiltration composite membrane was successfully prepared with aluminate coupling agent (ACA) as modifier, sodium bisulfite (NaHSO3) and potassium persulfate (K2S2O8) as initiator and methacryloyloxyethyl trimethylammonium chloride (DMC) as crosslinking monomer. The surface of the membrane before grafting and after polymerization were characterized by SEM and FT-IR. Three factor and three-level orthogonal experiments were designed to explore the optimal conditions for membrane preparation, and the optimal group was successfully prepared. The filtration experiments of different salt solutions were carried out, and the retention molecular weight was determined by polyethylene glycol (PEG). The results showed that the polymerization temperature had the greatest effect on the rejection rate, followed by the reaction time, and the concentration of DMC had the least effect on the rejection rate. The rejection rates of CaCl2, MgSO4, NaCl and Na2SO4 in the optimal group were 83.8%, 81.3%, 28.1% and 23.6% (average value), respectively. The molecule weight cut-off of 90% (MWCO) of the optimal group was about 460, which belongs to nanofiltration membrane.

Influence of feed water chemistry on the removal of ionisable and neutral trace organics by a loose nanofiltration membrane

  • Nghiem, Long D.
    • Membrane and Water Treatment
    • /
    • 제1권2호
    • /
    • pp.93-101
    • /
    • 2010
  • This study examined the effects of feed water chemistry and membrane fouling on the rejection of trace organics by a loose nanofiltration membrane. One ionisable and one non-ionisable trace organics were selected for investigation. Results reported here indicate that the solution pH and ionic strength can markedly influence the removal of the ionisable trace organic compound sulfamethoxazole. These observations were explained by electrostatic interactions between the solutes and the membrane surface and by the speciation of the ionisable compound. On the other hand, no appreciable effects of solution pH and ionic strength on the rejection of the neutral compound carbamazepine were observed in this study. In addition, membrane fouling has also been shown to exert some considerable impact on the rejection of trace organics. However, the underlying mechanisms remain somewhat unclear and are subject to on-going investigation.

Selectivity and structural integrity of a nanofiltration membrane for treatment of liquid waste containing uranium

  • Oliveira, Elizabeth E.M.;Barbosa, Celina C.R.;Afonso, Julio C.
    • Membrane and Water Treatment
    • /
    • 제3권4호
    • /
    • pp.231-242
    • /
    • 2012
  • The performance of a nanofiltration membrane for treatment of a low-level radioactive liquid waste was investigated through static and dynamic tests. The liquid waste ("carbonated water") was obtained during conversion of $UF_6$ to $UO_2$. In the static tests membrane samples were immersed in the waste for 24, 48 or 72 h. The transport properties of the samples (hydraulic permeability, permeate flow, selectivity) were evaluated before and after immersion in the waste. In the dynamic tests the waste was permeated in a permeation flow front system under 0.5 MPa, to determine the selectivity of NF membranes to uranium. The surface layer of the membrane was characterized by zeta potential, field emission microscopy, atomic force spectroscopy and infrared spectroscopy. The static test showed that the pore size distribution of the selective layer was altered, but the membrane surface charge was not significantly changed. 99% of uranium was rejected after the dynamic tests.

Performance prediction of flat sheet commercial nanofiltration membrane using Donnan-Steric Pore Model

  • Qadir, Danial;Nasir, Rizwan;Mukhtar, Hilmi;Uddin, Fahim
    • Membrane and Water Treatment
    • /
    • 제12권2호
    • /
    • pp.59-64
    • /
    • 2021
  • The rejection of sodium chloride (NaCl) and calcium chloride (CaCl2) single salt solutions were carried out for commercial nanofiltration NFDK membrane. Results showed that the NFDK membrane had a negative surface charge and had a higher observed rejection of 93.65% for calcium (Ca2+) ion and 78.27% for sodium (Na+) ions. Prediction of rejection for aqueous solutions of both salts was made using Donnan Steric Pore Model based on Extended Nernst-Planck Equation in addition to concentration polarization film theory. A MATLAB program was developed to execute the model calculations. Absolute Average Relative Error (% AARE) was found below 5% for real rejection of the NFDK membrane. This research could be used successfully to assess the membrane characterization parameter using a proposed procedure which can reduce the number of experiments.

Preparation of high-performance nanofiltration membrane with antioxidant properties

  • Yu, Feiyue;Zhang, Qinglei;Pei, Zhiqiang;Li, Xi;Yang, Xuexuan;Lu, Yanbin
    • Membrane and Water Treatment
    • /
    • 제13권4호
    • /
    • pp.191-199
    • /
    • 2022
  • In industrial production, the development of traditional polyamide nanofiltration (NF) membrane was limited due to its poor oxidation resistance, complex preparation process and high cost. In this study, a composite NF membrane with high flux, high separation performance, high oxidation resistance and simple process preparation was prepared by the method of dilute solution dip coating. And the sulfonated polysulfone was used for dip coating. The results indicated that the concentration of glycerin, the pore size of the based membrane, the composition of the coating solution, and the post-treatment process had important effects on the structure and performance of the composite NF membrane. The composite NF membrane prepared without glycerol protecting based membrane had a low flux, when the concentration of glycerin increased from 5% to 15%, the pure water flux of the composite NF membrane increased from 46.4 LMH to 108.2 LMH, and the salt rejection rate did not change much. By optimizing the coating system, the rejection rate of Na2SO4 and PEG1000 was higher than 90%, the pure water flux was higher than 40 LMH (60psi), and it can withstand 20,000 ppm.h NaClO solution cleaning. When the post treatment processes was adjusted, the salt rejection rate of NaCl solution (250 ppm) reached 45.5%, and the flux reached 62.2 LMH.

Reverse Osmosis and Nanofiltration Using the Disc-tube-module in the Purification of Landfill Leachate

  • Peters, Thomas A.
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 1995년도 제3회 하계분리막 Workshop (환경과 막분리 공정의 역할)
    • /
    • pp.27-38
    • /
    • 1995
  • Based on innovative membrane module concepts reverse osmosis and nanofiltration are going to become important instruments in environmental engineering. One example is the Disc-Tube-module and its application for the purification of landfill leachate. Currently over 45 different landfills are using this ROCHEM DT-module, in some cases combined with the high pressure reverse osmosis versions of this module, operating at up to 120 bar and 200 bar. This state of the art membrane technology and the DTF-module for nanofiltration, developed by ROCHEM on the basis of the DT-module and RO-systems for the purification of landfill leachate, make possible in hybrid processes permeate recovery rates of more than 97 % with concentration factors up to 40.

  • PDF

Preparation of Poly(vinylidene fluoride)-g-poly(methacrylic acid) Composite Nanofiltration Membrane

  • Kim, Yong-Woo;Choi, Jin-Kyu;Koh, Joo-Hwan;Kim, Jong-Hak
    • Korean Membrane Journal
    • /
    • 제9권1호
    • /
    • pp.57-63
    • /
    • 2007
  • Amphiphilic graft copolymer from poly(vinylidene fluoride) (PVDF) was synthesized using atom transfer radical polymerization (ATRP) for composite nanofiltration membranes. Direct initiation of the secondary fluorinated site of PVDF facilitates grafting of tert-butyl methacrylate (tBMA). Amphiphilic PVDF-g-PMAA graft copolymer with a 51:49 wt ratio was obtained by hydrolyzing poly(tert-butyl methacrylate) (PtBMA) to poly(methacrylic acid) (PMAA). Wide angle X-ray scattering (WAXS) and differential scanning calorimetry (DSC) confirmed the decrease of crystallinity of PVDF upon graft copolymerization. Composite nanofiltration membranes were prepared from PVDF-g-PMAA as a top layer coated onto PVDF ultrafiltration (UF) support membrane. The morphology and hydrophilicity of membranes were characterized using scanning electron microscopy (SEM) and contact angle measurement. The rejections of composite membranes were 80.2% for $Na_2SO_4$ and 28.4% for NaCl, and the solution flux were 9.5 and $14.5\;L/m^2\;h$ at 1.0 MPa pressure.

폐수처리를 위한 세라믹계 나노여과막: 리뷰 (Ceramic based Nanofiltration Membrane for Wastewater Treatment: A Review)

  • 곽연수;라즈쿠마 파텔
    • 멤브레인
    • /
    • 제32권6호
    • /
    • pp.390-400
    • /
    • 2022
  • 나노여과막(NF)은 식품가공, 제약 등 폐수는 물론 지자체 하수처리시설에서 배출되는 폐수 처리에 있어 훨씬 낮은 압력으로 운용이 가능해 역삼투막(RO)보다 인기가 높다. NF막의 경우 분리 메커니즘은 투과확산 기작과 더불어 RO 박막보다 낮은 가교밀도로 인한 체거름 메커니즘이다. 막 오염은 세라믹 막과 달리 고분자 막의 경우 나노 여과 공정의 고질적인 문제 중 하나이다. 이러한 문제를 해결하기 위해 차아염소산나트륨을 사용한 멤브레인 세척이 이루어진다. 폴리머 멤브레인에 비해 세라믹 멤브레인은 이러한 화합물에 매우 안정적이다. 본 리뷰에서는 NF 프로세스에 의한 폐수 처리의 다양한 유형의 세라믹 막 적용에 대해 논의한다.

Nanofiltration linear and helical module들의 막투과 성능 비교 (A Study ob Performance with NanofiltrationLinear and Helical Modules)

  • 이광현
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 1997년도 추계 총회 및 학술발표회
    • /
    • pp.33-36
    • /
    • 1997
  • 1. 서론 : 압력-구동 막공정을 분리공정에 응용시 커다란 장해는 막표변과 내부에 용존 및 부유물질들의 성장과 침착현상이다. 지난 수년 동안에 여러 연구자들이 유체의 불안정성을 이용하여 농도분극과 오염현상을 효과적으로 제거할 수 있음을 보였다.(생략)

  • PDF

Arsenic removal from Water by Nanofiltration Membrane

  • Nguyen, Cuong Manh;Bang, Sun-Baek;Cho, Jae-Weon;Kim, Kyoung-Woong
    • 대한자원환경지질학회:학술대회논문집
    • /
    • 대한자원환경지질학회 2007년도 춘계 지질과학기술 공동학술대회
    • /
    • pp.58-61
    • /
    • 2007
  • See Full Text

  • PDF