Browse > Article
http://dx.doi.org/10.12989/mwt.2021.12.2.059

Performance prediction of flat sheet commercial nanofiltration membrane using Donnan-Steric Pore Model  

Qadir, Danial (Department of Chemical Engineering, University Teknologi PETRONAS)
Nasir, Rizwan (Department of Chemical Engineering, University of Jeddah)
Mukhtar, Hilmi (Department of Chemical Engineering, University Teknologi PETRONAS)
Uddin, Fahim (Department of Chemical Engineering, NED University of Engineering and Technology)
Publication Information
Membrane and Water Treatment / v.12, no.2, 2021 , pp. 59-64 More about this Journal
Abstract
The rejection of sodium chloride (NaCl) and calcium chloride (CaCl2) single salt solutions were carried out for commercial nanofiltration NFDK membrane. Results showed that the NFDK membrane had a negative surface charge and had a higher observed rejection of 93.65% for calcium (Ca2+) ion and 78.27% for sodium (Na+) ions. Prediction of rejection for aqueous solutions of both salts was made using Donnan Steric Pore Model based on Extended Nernst-Planck Equation in addition to concentration polarization film theory. A MATLAB program was developed to execute the model calculations. Absolute Average Relative Error (% AARE) was found below 5% for real rejection of the NFDK membrane. This research could be used successfully to assess the membrane characterization parameter using a proposed procedure which can reduce the number of experiments.
Keywords
donnan-steric partitioning model; flat sheet; nanofiltration; Nernst Planck equation; real rejection;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Kaykioglu, G., Ata, R., Tore, G.Y. and Agirgan, A.O. (2017), "Evaluation of effects of textile wastewater on the quality of cotton fabric dye", Membr. Water Treat., 8(1), 1-18. https://doi.org/10.12989/mwt.2017.8.1.001.   DOI
2 Kheriji, J., Tabassi, D., Bejaoui, I. and Hamrouni, B. (2016), "Boron removal from model water by RO and NF membranes characterized using SK model", Membr. Water Treat., 7(3), 193-207. http://doi.org/10.12989/mwt.2016.7.3.193.   DOI
3 Khulbe, K., Feng, C., Matsuura, T. and Ismail, A. (2012), "Progresses in membrane and advanced oxidation processes for water treatment", Membr. Water Treat., 3(3), 181-200. https://doi.org/10.12989/mwt.2012.3.3.181.   DOI
4 Labban, O., Liu, C., Chong, T.H. and Lienhard, V.J.H. (2017), "Fundamentals of low-pressure nanofiltration: Membrane characterization, modeling, and understanding the multi-ionic interactions in water softening", J. Membr. Sci., 521, 18-32. http://doi.org/10.1016/j.memsci.2016.08.062.   DOI
5 Labbez, C., Fievet, P., Szymczyk, A., Vidonne, A., Foissy, A. and Pagetti, J. (2002), "Analysis of the salt retention of a titania membrane using the "DSPM" model: Effect of pH, salt concentration and nature", J. Membr. Sci., 208(1-2), 315-329. http://doi.org/10.1016/S0376-7388(02)00310-1.   DOI
6 Labbez, C., Fieve, P., Szymczyk, A., Vidonne, A., Foissy, A. and Pagetti, J. (2003), "Retention of mineral salts by a polyamide nanofiltration membrane", Sep. Purif. Technol., 30(1), 47-55. http://doi.org/10.1016/S1383-5866(02)00107-7.   DOI
7 Lee, S. and Lueptow, R.M. (2001), "Membrane rejection of nitrogen compounds", Environ. Sci. Tech., 35(14), 3008-3018. https://doi.org/10.1021/es0018724.   DOI
8 Li, D., Chung, T.S., Ren, J. and Wang, R. (2004), "Thickness dependence of macrovoid evolution in wet phase-inversion asymmetric membranes", Ind. Eng. Chem. Res., 43(6), 1553-1556. https://doi.org/10.1021/ie034264g.   DOI
9 Qadir, D., Mukhtar, H. and Keong, L.K. (2017), "Retention of sulfate and chloride ions in commercially available tubular membranes", Membr. Water Treat., 8(4), 369-380. https://doi.org/10.12989/mwt.2017.8.4.369.   DOI
10 Perez-Gonzalez, Ibañez, A., R., Gómez, P., Urtiaga, A.M., Ortiz, I. and Irabien, J.A. (2015), "Nanofiltration separation of polyvalent and monovalent anions in desalination brines", J. Membr. Sci., 473, 16-27. https://doi.org/10.1016/j.memsci.2014.08.045.   DOI
11 Shahbabaei, M. and Kim, D. (2017), "Molecular simulation study of water transport through aquaporin-inspired pore geometry", J. Mech. Sci. Tech., 31(8), 3845-3851. https://doi.org/10.1007/s12206-017-0729-5.   DOI
12 Szymczyk, A., Labbez, C., Fievet, P., Vidonne, A., Foissy, A. and Pagetti, J. (2003), "Contribution of convection, diffusion and migration to electrolyte transport through nanofiltration membranes", Adv. Colloid. Interfac., 103(1), 77-94. http://doi.org/10.1016/S0001-8686(02)00094-5.   DOI
13 Wang, J., Dlamini, D.S., Mishra, A.K., Pendergast, M.T.M., Wong, M.C.Y., Mamba, B.B., Frege,r V., Verliefde, A.R.D. and Hoek, E.M.V. (2014), "A critical review of transport through osmotic membranes", J. Membr. Sci., 454, 516-537. http://doi.org/10.1016/j.memsci.2013.12.034.   DOI
14 Wang, J., Mo, Y., Mahendra, S. and Hoek, E.M.V. (2014), "Effects of water chemistry on structure and performance of polyamide composite membranes", J. Membr. Sci., 452, 415-425. http://doi.org/10.1016/j.memsci.2013.09.022.   DOI
15 Wang, L., Dumont, R.S. and Dickson, J.M. (2016), "Molecular dynamic simulations of pressure-driven water transport through polyamide nanofiltration membranes at different membrane densities", RSC Adv., 6(68), 63586-63596. http://doi.org/10.1039/C6RA12115B.   DOI
16 Fang, J. and Deng, B. (2014), "Rejection and modeling of arsenate by nanofiltration: Contributions of convection, diffusion and electromigration to arsenic transport", J. Membr. Sci., 453, 42-51. http://doi.org/10.1016/j.memsci.2013.10.056.   DOI
17 Bargeman, G., Westerink, J.B., Guerra Miguez, O. and Wessling, M. (2014), "The effect of NaCl and glucose concentration on retentions for nanofiltration membranes processing concentrated solutions", Sep. Purif. Technol., 134, 46-57. https://doi.org/10.1016/j.seppur.2014.07.025.   DOI
18 Abdel-Fatah, M.A., Khater, E., Hafez, A. and Shaaban, A. (2020), "Performance of fouled NF membrane as used for textile dyeing wastewater", Membr. Water Treat., 11(2), 111-121. https://doi.org/10.12989/mwt.2020.11.2.111.   DOI
19 Agboola, O., Maree, J. and Mbaya, R. (2014), "Characterization and performance of nanofiltration membranes", Environ. Chem. Lett., 12(2), 241-255. https://doi.org/10.1007/s10311-014-0457-3.   DOI
20 Fang, J. and Deng, B. (2014), "Arsenic rejection by nanofiltration membranes: Effect of operating parameters and model analysis", Environ. Eng. Sci., 31(9), 496-506. https://doi.org/10.1089/ees.2013.0460.   DOI
21 Ferreira Esmi, C., Schrive, L., Barre, Y., Palmeri, J. and Deratani, A. (2013), "Using nanofiltration in a "zero-rejection" process: The removal of Ni2+ and Co2+ from salty wastewater", Desalin. Water Treat., 51(1-3), 476-484. https://doi.org/10.1080/19443994.2012.714526.   DOI
22 Jadhav, S.V., Marathe, K.V. and Rathod, V.K. (2016), "A pilot scale concurrent removal of fluoride, arsenic, sulfate and nitrate by using nanofiltration: Competing ion interaction and modelling approach", J. Water Proc. Eng., 13, 153-167. http://doi.org/10.1016/j.jwpe.2016.04.008.   DOI