• Title/Summary/Keyword: nanofibers

Search Result 493, Processing Time 0.037 seconds

Fabrication of a Polymeric Film with Nanofiber-based Porous Window and Its Application to Co-culture (섬유 기반의 다공성 윈도우를 가지는 박막 제작 및 공배양에의 활용)

  • Jeong, Young Hun;Lee, Jongwan;Jin, Songwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.2
    • /
    • pp.21-27
    • /
    • 2014
  • Recently, various biochip environments have been presented. In this study, a novel transparent film with porous membrane windows, which is an essential component in a co-cultured biochip environment, is fabricated using spin-coating, 3D printing, and electrospinning processes. In detail, a transparent polystyrene film was fabricated by means of the spin-coating process followed bywindow cutting, after which apolycaprolactone-chloroform solution was deposited along the window edge to introduce an adhesion layer between the PS film and the PCL nanofibers. Nanofibers were electrospun into the window region using a direct-write electrospinning method. Consequently, it was demonstrated that the fabricated window film could be used in a co-culture biochip environment.

The Processing and Mechanical Performance of Cellulose Nanofiber-based Composites

  • Nakagaito, Antonio Norio;Takagi, Hitoshi;Pandey, Jitendra Kumar
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.4
    • /
    • pp.180-184
    • /
    • 2011
  • Nanocomposites based on cellulose nanofibers have been studied for a considerable time since its first introduction, however real applications seem to have hardly developed to these days. The high-strength of cellulose nanofibers suggests the potential to reinforce plastics to produce composites for semi-structural or even structural applications. This paper discusses some of the attempts to produce such high-strength nanocomposites and the main challenges that have to be overcome to bring them into commercial products.

Effects of carbonization temperature on pore development in polyacrylonitrile-based activated carbon nanofibers

  • Lee, Hye-Min;An, Kay-Hyeok;Kim, Byung-Joo
    • Carbon letters
    • /
    • v.15 no.2
    • /
    • pp.146-150
    • /
    • 2014
  • In this work, activated carbon nanofiber (ACNF) electrodes with high double-layer capacitance and good rate capability were prepared from polyacrylonitrile nanofibers by optimizing the carbonization temperature prior to $H_2O$ activation. The morphology of the ACNFs was observed by scanning electron microscopy. The elemental composition was determined by analysis of X-ray photoelectron spectroscopy. $N_2$-adsorption-isotherm characteristics at 77 K were confirmed by Brunauer-Emmett-Teller and Dubinin-Radushkevich equations. ACNFs processed at different carbonization temperatures were applied as electrodes for electrical double-layer capacitors. The experimental results showed that the surface morphology of the CNFs was not significantly changed after the carbonization process, although their diameters gradually decreased with increasing carbonization temperature. It was found that the carbon content in the CNFs could easily be tailored by controlling the carbonization temperature. The specific capacitance of the prepared ACNFs was enhanced by increasing the carbonization temperature.

Earthquake analysis of NFRP-reinforced-concrete beams using hyperbolic shear deformation theory

  • Rad, Sajad Shariati;Bidgoli, Mahmood Rabani
    • Earthquakes and Structures
    • /
    • v.13 no.3
    • /
    • pp.241-253
    • /
    • 2017
  • In this paper, dynamic response of the horizontal nanofiber reinforced polymer (NFRP) strengthened concrete beam subjected to seismic ground excitation is investigated. The concrete beam is modeled using hyperbolic shear deformation beam theory (HSDBT) and the mathematical formulation is applied to determine the governing equations of the structure. Distribution type and agglomeration effects of carbon nanofibers are considered by Mori-Tanaka model. Using the nonlinear strain-displacement relations, stress-strain relations and Hamilton's principle (virtual work method), the governing equations are derived. To obtain the dynamic response of the structure, harmonic differential quadrature method (HDQM) along with Newmark method is applied. The aim of this study is to investigate the effect of NFRP layer, geometrical parameters of beam, volume fraction and agglomeration of nanofibers and boundary conditions on the dynamic response of the structure. The results indicated that applied NFRP layer decreases the maximum dynamic displacement of the structure up to 91 percent. In addition, using nanofibers as reinforcement leads a 35 percent reduction in the maximum dynamic displacement of the structure.

Nanopottery: coiling of electrospun nanojets (나노스케일 도예 기법: 전기 방사된 나노젯의 코일링)

  • Kim, Sung-Ho;Chang, Young-Soo;Kim, Ho-Young
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1863-1868
    • /
    • 2008
  • In an electrospinning process, nanofibers are produced from a droplet of a viscoelastic polymer solution subjected to strong electric field. To date, intrinsic bending instability of the electrical jets has resulted in random piles of nanofibers on a grounded collector plate. Here we report a novel electrospinning process where a hollow micropillar is constructed by the coiling of nanofibers on a sharp grounded collector. We show that the hollow microstructure formation can be explained by the viscous fluid rope coiling theory. The current process can be employed for the fabrication of three-dimensional scaffolds for cell culturing and the three-dimensional nanoprinting.

  • PDF

Continuous Nanofibers Manufactured by Electrospinning Technique

  • Lee, Suck-Hyun;Yoon, Jung-Woo;Suh, Moon-Ho
    • Macromolecular Research
    • /
    • v.10 no.5
    • /
    • pp.282-285
    • /
    • 2002
  • In this paper, we report a modified technique for the production of oriented continuous nanofibers instead of non-woven mats using a rapidly rotating collection device. We are interested in retaining physical properties such as electrical conductivity of fiber bundles in their axial direction. The experiments were performed using polyethylene oxide (PEO) and its blend with polyaniline (PANI). According to the results, a typical fiber with a uniform diameter of about 100 nanometer was produced. The fibers from the PEO/ CHCl$_3$ solution show high crystallinity and good orientation whereas the fibers from the blend solution of PEO/PANI/m-cresol and CHCl$_3$ show no preferred orientation. However, the fibers of the blend exhibit high electrical conductivity of 33 S/cm for a fiber bundle at a PANI level of 50 %.

Effect of Co-solvent Ratios and Solution Concentrations on Morphologies of Electrospun Zein Nanomaterials

  • Rabbani, Mohammad Mahbub;Kim, Young Hun;Yeum, Jeong Hyun
    • Current Research on Agriculture and Life Sciences
    • /
    • v.31 no.1
    • /
    • pp.11-17
    • /
    • 2013
  • To investigate the effects of co-solvents on the morphology of nano-scale zein materials, zein solutions were electrospun with different co-solvent ratios of EtOH/$H_2O$. Different zein solution concentrations were used to study the effects of the zein content on the electrospun materials. The resulting electrospun materials were all characterized using field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The diameters of the electrospun nanoparticles and nanofibers were found to increase when increasing the EtOH ratio at certain zein concentrations. Furthermore, increasing the zein content changed the morphology of the electrospun materials from nanoparticles to nanofibers.

  • PDF

Effect of Heat Treatment on CO2 Adsorption of Ammonized Graphite Nanofibers

  • Meng, Long-Yue;Cho, Ki-Sook;Park, Soo-Jin
    • Carbon letters
    • /
    • v.11 no.1
    • /
    • pp.34-37
    • /
    • 2010
  • In this work, graphite nanofibers (GNFs) were prepared by ammonia and heat treatment at temperatures up to $1000^{\circ}C$ to improve its $CO_2$ adsorption capacity. The effects of the heat treatment on the textural properties and surface chemistry of the GNFs were investigated by $N_2$ adsorption isotherms, XRD, and elemental analysis. We found that the chemical properties of GNFs were significantly changed after the ammonia treatment. Mainly amine groups were formed on the GNF surfaces such as lactam groups, pyrrole and pyridines. The GNFs treated at $500^{\circ}C$ showed highest $CO_2$ adsorption capacity of 26.9 mg/g at 273 K in this system.

Carbon Nanofibers with Controlled Size and Morphology Synthesized with Ni-MgO Catalyst Treated by Mechanochemical Process

  • Fangli Yuan;Ryu, Ho-Jin;Kang, Yong-Ku;Park, Soo-Jin;Lee, Jae-Rock
    • Journal of the Semiconductor & Display Technology
    • /
    • v.3 no.1
    • /
    • pp.9-13
    • /
    • 2004
  • Carbon nanofibers (CNFs) with uniform diameter and controlled size were prepared from catalytic decomposition of $\textrm{C}_{2}\textrm{H}_{2}$ with Ni-MgO catalyst treated by mechanochemical (MC) process. The properties of Ni catalyst, such as size, distribution and morphology, can be governed by tuning grinding time in MC process. As a result, size and structure of CNFs can be tailored. The effect of grinding time to the as-grown CNFs was studied. CNFs with diameter from 10-70 nm were synthesized. CNFs with bundle formation sharing one tip and twisted CNFs were also synthesized with catalyst treated by MC process.

  • PDF

Carbon Nanofibers Prepared with Ni-MgO Catalyst Treated by Mechanochemical Process and Their Application as Catalyst Support Material for PEMEC

  • Yuan Fangli;Ryu Hojin
    • 한국전기화학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.193-197
    • /
    • 2003
  • Mixture of $Ni(OH)_2-Mg(OH)_2$ used as the precurs was treated by mechnochemical(MC) and hand grinding process. Carbon nanofibers(CNF) were prepared using CVD process with the above prepared catalyst. CNFs with a uniform diameter were obtained with MC process treated catalyst, and the diameter could be controlled by tuning the grinding time. CNF bundles with close coalescence were produced with MC treated catalyst. After purification of CNFs and loading with Pt, they were used in fuel cell as the cathode catalyst support. The performance with carbon nanofibers prepared using ground mixture was found to be better than that prepared using unground mixture, which is attributed to the homogeneous CNFs with small diameter and specific interaction between Pt and CNFs.

  • PDF