• 제목/요약/키워드: nanofiber mat

검색결과 17건 처리시간 0.024초

Recent advances of pectin-based biomedical application: potential of marine pectin

  • Kim, Min-Sung;Chandika, Pathum;Jung, Won-Kyo
    • 한국해양바이오학회지
    • /
    • 제13권1호
    • /
    • pp.28-47
    • /
    • 2021
  • Pectin is a natural polysaccharide and biopolymer that serves as a structural component of plant tissues' primary cell walls. Pectin is primarily composed of D-galacturonic acid linked by α-1, 4-glycosidic linkage and is further classified by the ratio of esterified galacturonic acid groups known as degree of esterification (DE). Pectin that contains more than half of its carboxylate units as methyl esters is known as a high methyl (HM) ester. Conversely, pectin that has less than half of its carboxylate units as methyl esters is known as a low methyl (LM) ester. Pectin has various bioactive properties, including anticancer, anti-inflammatory, antioxidant, antidiabetic, anticholesterol, antitumoral, and chemopreventive properties. Moreover, pectin is a useful biopolymer in biomedical applications. Biomedical engineering, which is founded on research aimed to improve the quality of life using new materials and technologies, is typically classified according to the use of hydrogels, nanofiber mats, and nanoparticles. This paper reviews the progress of recent research into pectin-based biomedical applications and the potential future biomedical applications of marine-derived pectin.

기계적 특성 및 공극률 조절을 위한 나노/마이크로섬유 하이브리드 매트 제작 (Fabrication of a Nano/Microfiber Hybrid Mat for Control of Mechanical Properties and Porosity)

  • 김정화;정영훈
    • 대한기계학회논문집A
    • /
    • 제41권1호
    • /
    • pp.41-48
    • /
    • 2017
  • 최근 에너지, 바이오공학, 전자공학 등 다양한 분야에서 초미세 고분자섬유의 활용이 증대되고 있다. 이러한 고분자 섬유의 제작방법의 하나로서 전기방사법은 타 공정에 비해 공정장치가 간단하고 재료의 선택에 제한이 적은 등 다양한 장점을 가져 활발하게 사용되고 있다. 그러나 전기방사공정은 미세한 고분자 섬유가 전기장이 부가된 공기층을 통과하면서 높은 불안정성을 가지기 때문에 전기방사공정을 통해 제작되는 섬유매트의 형상 및 기하학적 특성의 조절이 어려운 단점을 가지고 있다. 본 연구에서는 서로 다른 두 가지 용매를 이용하여 섬유의 직경을 나노섬유와 마이크로섬유로 제작할 수 있음을 보였으며, 이를 조합하여 기계적 특성과 공극률을 조절할 수 있는 하이브리드 섬유매트를 제작할 수 있음을 보였다. 또한 제작된 매트를 이용하여 기계적 특성과 공극률이 조절될 수 있음을 확인하였다.

Nanofabrication of Microbial Polyester by Electrospinning Promotes Cell Attachment

  • Lee, Ik-Sang;Kwon, Oh-Hyeong;Wan Meng;Kang, Inn-Kyu;Yoshihiro Ito
    • Macromolecular Research
    • /
    • 제12권4호
    • /
    • pp.374-378
    • /
    • 2004
  • The biodegradable and biocompatible poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), a copolymer of microbial polyester, was fabricated as nanofibrous mats by electrospinning. Image analysis of the electrospun nanofibers fabricated from a 2 wt% 2,2,2-trifluoroethanol solution revealed a unimodal distribution pattern of fiber diameters with an observed average diameter of ca. 185 nm. The fiber diameter of electrospun fabrics could be controlled by adjusting the electro spinning parameters, including the solvent composition, concentration, applied voltage, and tip-to-collector distance. Chondrocytes derived from rabbit ear were cultured on a PHBV cast film and an electrospun PHBV nano-fibrous mat. After incubation for 2 h, the percentages of attached chondrocytes on the surfaces of the flat PHBV film and the PHBV nanofibrous mat were 19.0 and 30.1 %, respectively. On the surface of the electrospun PHBV fabric, more chondrocytes were attached and appeared to have a much greater spreaded morphology than did that of the flat PHBV cast film in the early culture stage. The electro spun PHBV nanofabric provides an attractive structure for the attachment and growth of chondrocytes as cell culture surfaces for tissue engineering.

Membrane Morphology: Phase Inversion to Electrospinning

  • Chanunpanich N.;Byun Hongsik;Kang Inn-Kyu
    • 멤브레인
    • /
    • 제15권2호
    • /
    • pp.85-104
    • /
    • 2005
  • Recently, membrane can be prepared by two methods, phase inversion and electrospinning techniques. Phase inversion technique is a conventional but commercially preparation membrane. The most versatile of preparation in this technique is immersion of the cast film into nonsolvent bath, causing dense top layer with a finger-like pattern in the sub layer membrane. The membrane pore size getting from phase inversion is in the range of micro or submicrometer. As a result, it can be used as microfiltration and ultrafiltration applications. A new technique, electrospinning, is introduced for membrane preparation. Nonwoven nanofibrous mat or nanofibrous membrane is obtained. In this technique, electrostatic charge is introduced to the solution jet, causing a thin fiber with high surface area; hence it can be used in the applications where high surface area-to-volume or length-to-diameter ratios are required. Moreover, the pore size can be controlled by controlling the time of electrospinning. Hence, it can be used as a filter for filtering microparticles as well as nanoparticles.

Gas sensing properties of polyacrylonitrile/metal oxide nanofibrous mat prepared by electrospinning

  • 이득용;조정은;김예나;오영제
    • 센서학회지
    • /
    • 제17권4호
    • /
    • pp.281-288
    • /
    • 2008
  • Polyacrylonitrile(PAN)/metal oxide(MO) nanocomposite mats with a thickness of 0.12 mm were electrospun by adding 0 to 10 wt% of MO nanoparticles ($Fe_2O_3$, ZnO, $SnO_2$, $Sb_2O_3-SnO_2$) into PAN. Pt electrode was patterned on $Al_2O_3$ substrate by DC sputtering and then the PAN(/MO) mats on the Pt patterned $Al_2O_3$ were electrically wired to investigate the $CO_2$ gas sensing properties. As the MO content rose, the fiber diameter decreased due to the presence of lumps caused by the presence of MOs in the fiber. The PAN/2% ZnO mat revealed a faster response time of 93 s and a relatively short recovery of 54 s with a ${\Delta}R$ of 0.031 M${\Omega}$ at a $CO_2$ concentration of 200 ppm. The difference in sensitivity was not observed significantly for the PAN/MO fiber mats in the $CO_2$ concentration range of 100 to 500 ppm. It can be concluded that an appropriate amount of MO nanoparticles in the PAN backbone leads to improvement of the $CO_2$ gas sensing properties.

신경세포 재생을 위한 고배열성 Poly(${\varepsilon}$-caprolactone) 마이크로/나노섬유 제조 공정에 관한 연구 (Fabricating Highly Aligned Electrospun Poly(${\varepsilon}$-caprolactone) Micro/Nanofibers for Nerve Tissue Regeneration)

  • 윤현;이행남;박길문;김근형
    • 폴리머
    • /
    • 제34권3호
    • /
    • pp.185-190
    • /
    • 2010
  • 전기방사공정에 의해 고분자의 나노 크기의 섬유를 만드는 기술로 널리 사용되어졌으며, 제작된 나노섬유는 그 높은 표면적과 형태학적 특성때문에 조직재생 공학분야에서 많이 사용되어져 왔다. 본 연구에서는 기존의 전기방사공정을 개선한 복합전기장을 이용하여 생분해성/생체적합성 poly(${\varepsilon}$-caprolactone) (PCL) 마이크로/나노섬유를 제작하였고, 기존의 나노섬유의 배열성보다 제어가 가능한 배열성을 갖는 공정시스템을 통하여 보다 우수한 배열성을 갖는 PCL 나노섬유를 제작하였다. 고배열된 PCL 나노섬유는 신경세포 재생을 위한 세포담체로서의 가능성을 확인하고자 신경세포(PC-12)를 배양하였으며 그 결과 높은 배열성을 갖은 PCL 나노섬유 매트에서 신경세포의 배열성이 얻어짐을 확인하였다.

Fabrication of PHBV/Keratin Composite Nanofibrous Mats for Biomedical Applications

  • Yuan, Jiang;Xing, Zhi-Cai;Park, Suk-Woo;Geng, Jia;Kang, Inn-Kyu;Yuan, Jiang;Shen, Jian;Meng, Wan;Shim, Kyoung-Jin;Han, In-Suk;Kim, Jung-Chul
    • Macromolecular Research
    • /
    • 제17권11호
    • /
    • pp.850-855
    • /
    • 2009
  • Keratin is an important protein used in wound healing and tissue recovery. In this study, keratin was modified chemically with iodoacetic acid (IAA) to enhance its solubility in organic solvent. Poly(hydroxybutylate-co-hydroxyvalerate) (PHBV) and modified keratin were dissolved in hexafluoroisopropanol (HFIP) and electrospun to produce nanofibrous mats. The resulting mats were surface-characterized by ATR-FTIR, field-emission scanning electron microscopy (FE-SEM) and electron spectroscopy for chemical analysis (ESCA). The pure m-keratin mat was cross-linked with glutaraldehyde vapor to make it insoluble in water. The biodegradation test in vitro showed that the mats could be biodegraded by PHB depolymerase and trypsin aqueous solution. The results of the cell adhesion experiment showed that the NIH 3T3 cells adhered more to the PHBV/m-keratin nanofibrous mats than the PHBV film. The BrdU assay showed that the keratin and PHBV/m-keratin nanofibrous mats could accelerate the proliferation of fibroblast cells compared to the PHBV nanofibrous mats.