• Title/Summary/Keyword: nanocomposite materials

Search Result 533, Processing Time 0.025 seconds

Fabrication of Metallic Particle Dispersed Ceramic Based Nanocomposite Powders by the Spray Pyrolysis Process Using Ultrasonic Atomizer and Reduction Process

  • Choa, Y.H.;Kim, B.H.;Jeong, Y.K.;Chae, K.W.;T.Nakayama;T. Kusunose;T.Sekino;K. Niibara
    • Journal of Powder Materials
    • /
    • v.8 no.3
    • /
    • pp.151-156
    • /
    • 2001
  • MgO based nanocomposite powder including ferromagnetic iron particle dispersions, which can be available for the magnetic and catalytic applications, was fabricated by the spray pyrolysis process using ultra-sonic atomizer and reduction processes. Liquid source was prepared from iron (Fe)-nitrate, as a source of Fe nano-dispersion, and magnesium (Mg)-nitrate, as a source of MgO materials, with pure water solvent. After the chamber were heated to given temperatures (500~$^800{\circ}C$), the mist of liquid droplets generated by ultrasonic atomizer carried into the chamber by a carrier gas of air, and the ist was decomposed into Fe-oxide and MgO nano-powder. The obtained powders were reduced by hydrogen atmosphere at 600~$^800{\circ}C$. The reduction behavior was investigated by thermal gravity and hygrometry. After reduction, the aggregated sub-micron Fe/MgO powders were obtained, and each aggregated powder composed of nano-sized Fe/MgO materials. By the difference of the chamber temperature, the particle size of Fe and MgO was changed in a few 10 nm levels. Also, the nano-porous Fe-MgO sub-micron powders were obtained. Through this preparation process and the evaluation of phase and microstructure, it was concluded that the Fe/MgO nanocomposite powders with high surface area and the higher coercive force were successfully fabricated.

  • PDF

Nanostructured Bulk Ceramics (Part III. Carbon Nanotube Ceramics)

  • Han, Young-Hwan;Mukherjee, Amiya K.
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.6
    • /
    • pp.541-544
    • /
    • 2009
  • In Part III, the paper will show that an alumina-carbon nanotube-niobium nanocomposite produced fracture toughness values that are several times higher than that of pure nanocrystalline alumina. It was possible to take advantage of both fiber-toughening and ductile-metal toughening in this investigation.

Research on the application of nanocomposite materials in children's physical exercise equipment

  • Huanxiang Ding;Xueqin Wang;Xiaodao Chen
    • Advances in nano research
    • /
    • v.14 no.3
    • /
    • pp.273-284
    • /
    • 2023
  • Combating the worldwide environmental threat of plastic waste pollution has become a priority. Plastic pollution has the potential to impact land, rivers, and seas, since many marine and terrestrial organisms have perished as a result of plastic's non-biodegradability and soil dangers. For this consumption, it seems required to manufacture and use new renewable resources. Renewable materials for diverse applications have been created utilizing nanotechnology, which may replace conventional materials for children's activities and sports equipment. This study investigates and suggests that nanotechnology-based materials be replaced with conventional materials to save the environment in manufacturing equipment for children's physical activities. On the basis of the mechanical sciences, a stability study of the bending behavior of small-scale structures will be performed for the various recommended materials.

Fabrication and Evaluation of Electrospun TiO2 Nanocomposite Fibers for the Development of UV-protective Textile Materials (자외선 차단 소재 개발을 위한 전기방사 TiO2 복합나노섬유의 제조 및 특성)

  • Lee, Kyung;Lee, Seung-Sin
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.34 no.11
    • /
    • pp.1767-1778
    • /
    • 2010
  • This study investigates applying $TiO_2$ (titanium dioxide) nanoparticles to polypropylene nonwoven fabrics via electrospinning for the development of UV-protective materials. To fabricate uniform nanocomposite fibers, three types of $TiO_2$ nanoparticles were applied: powder, colloid, and $TiO_2$ coated polymer pellets. $TiO_2$/polyurethane (PU) and $TiO_2$/poly(vinyl alcohol) (PVA) nanocomposite fibers were electrospun and the morphology was examined using a field-emission scanning electron microscope and a transmission electron microscope. Layered fabric systems with electrospun $TiO_2$ nanocomposite fiber webs were developed at various concentrations of $TiO_2$ in a range of the web area density. The effects of $TiO_2$ concentration and web area density on UV-protective properties were examined. When $TiO_2$ colloid was added into a PVA polymer solution, uniform nanocomposite fiber webs in which $TiO_2$ particles were evenly dispersed were produced. Water-soluble PVA nanofiber webs were given a heat treatment to stabilize the electrospun PVA fibrous structure against dissolution in water. $TiO_2$/PVA nanoeomposite fiber webs with 2wt% $TiO_2$ and 3.0g/$m^2$ web area density exhibited an ultraviolet protection factor of greater than 50, indicating excellent UV protection.

Thermal Property, Morphology, Optical Transparency, and Gas Permeability of PVA/SPT Nanocomposite Films and Equi-biaxial Stretching Films (폴리(비닐 알코올)/사포나이트 나노 복합체 필름 및 연신된 필름의 열적 성질, 모폴로지, 광학 투명성, 및 기체 투과성)

  • Ham, Miran;Kim, Jeong-Cheol;Chang, Jin-Hae
    • Polymer(Korea)
    • /
    • v.37 no.5
    • /
    • pp.579-586
    • /
    • 2013
  • Poly(vinyl alcohol)(PVA) nanocomposite films containing various saponite (SPT) clay contents were synthesized using a solution intercalation method. The thermal property, morphology, optical transparency, and gas permeability of the PVA nanocomposite films with various SPT contents in the range of 0 to 10 wt% were examined. PVA nanocomposite film containing 5 wt% SPT showed excellent thermal and gas barrier property. The hybrid films containing 5 wt% SPT were equibiaxially stretched with stretching ratios ranging from 150 to 250%. The clay dispersion, optical transparency, and gas permeability were also examined as a function of equibiaxial stretching ratio. The PVA nanocomposite films with various equibiaxial stretching ratios showed excellent optical transparency and barrier to oxygen permeability.

Synthesis and Characterization of Epoxy Based Nanocomposite Materials Using an Ultrasonicator (초음파 혼합에 근거한 에폭시 나노복합체의 제조와 특성)

  • Lee, Do Young;Park, Kyungmoon;Park, YoonKook
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.945-948
    • /
    • 2008
  • Nanocomposite materials provides efficient reinforcement, thermal endurance, and many other advantages depending on the additives used, with applications in the aerospace, automotive, and biomedical industries. Here, epoxy based nanocomposites were synthesized in the presence of Cloisite 15A and characterized with TEM, XRD, TGA, and DMA. To determine the effect of the clay d-spacing, Cloisite 20A was also used to synthesize the nanocompostes. In addition to the traditional hot plate method, an ultrasonicator was used to investigate the effect of different types of mixing on the properties of the nanocomposite; no significant effect was found. An examination of the nanocomposite morphology revealed that all the nanocomposites synthesized yielded an intercalated structure. When 5 wt% of Cloisite 15A was used with 20 min sonication time, the storage modulus increased 10% over the neat(no clay) nanocomposite. In general, the presence of Cloisite 15A produced a better storage modulus than Cloisite 20A.

Synthesis of conducting and magnetic nanocomposite of cross-linked aniline sulfide resin

  • Hosseini, Seyed Hossein
    • Advances in materials Research
    • /
    • v.3 no.4
    • /
    • pp.233-242
    • /
    • 2014
  • Magnetic and conducting aniline sulfide resin cross-linked (ASC-Fe3O4) nanocomposite has been prepared in the presence of aniline sulfide resin (ASR), aniline, $Fe_3O_4$ coated by polyethylene glycol (PEG) and initiator. The magnetic properties of the resulting composites showed ferromagnetic behavior, such as high-saturated magnetization (Ms= 41 emu/g), and coercive force (Hc=1.5 Oe). The saturated magnetization was increased by increasing of $Fe_3O_4$ content and decreased by increasing aniline ratio. The transmission electron micrograph (TEM) and X-ray diffraction proved that nanometer-sized about 20-30 nm $Fe_3O_4$ in the composite. The average size of ASC-$Fe_3O_4$ nanocomposite with core-shell structure was about 50-60 nm, and polydisperse. This approach may also be extended to the synthesis and modification of other polymers. Electrical conductivity of aniline sulfide resin cross-linked (ASC) nanocomposite has been studied by four-point probe method and produced $3.3{\times}10^{-4}S/cm$ conductivity for it. The conductivity of the composites at room temperature depended on the $Fe_3O_4$, aniline ratio and doping degree. The thermogravimetry analysis (TGA) results showed that this resin is thermal resistance near of $500^{\circ}C$. So, It can be used for resistance thermal coating for military applications. $Fe_3O_4$-PASC nanocomposite has been flexible structure with electrical and magnetic properties.

Reliability analysis-based conjugate map of beams reinforced by ZnO nanoparticles using sinusoidal shear deformation theory

  • Keshtegar, Behrooz;Kolahchi, Reza
    • Steel and Composite Structures
    • /
    • v.28 no.2
    • /
    • pp.195-207
    • /
    • 2018
  • First-order reliability method (FORM) is enhanced based on the search direction using relaxed conjugate reliability (RCR) approach for the embedded nanocomposite beam under buckling failure mode. The RCR method is formulated using discrete conjugate map with a limited scalar factor. A dynamical relaxed factor is proposed to control instability of proposed RCR, which is adjusted using sufficient descent condition. The characteristic of equivalent materials for nanocomposite beam are obtained by micro-electro-mechanical model. The probabilistic model of nanocomposite beam is simulated using the sinusoidal shear deformation theory (SSDT). The beam is subjected to external applied voltage in thickness direction and the surrounding elastic medium is modeled by Pasternak foundation. The governing equations are derived in terms of energy method and Hamilton's principal. Using exact solution, the implicit buckling limit state function of nanocomposite beam is proposed, which is involved various random variables including thickness of beam, length of beam, spring constant of foundation, shear constant of foundation, applied voltage, and volume fraction of ZnO nanoparticles in polymer. The robustness, accuracy and efficiency of proposed RCR method are evaluated for this engineering structural reliability problem. The results demonstrate that proposed RCR method is more accurate and robust than the excising reliability methods-based FORM. The volume fraction of ZnO nanoparticles and the applied voltage are the sensitive variables on the reliable levels of the nanocomposite beams.

Structural and Thermal Analysis and Membrane Characteristics of Phosphoric Acid-doped Polybenzimidazole/Strontium Titanate Composite Membranes for HT-PEMFC Applications

  • Selvakumar, Kanakaraj;Kim, Ae Rhan;Prabhu, Manimuthu Ramesh;Yoo, Dong Jin
    • Composites Research
    • /
    • v.34 no.6
    • /
    • pp.373-379
    • /
    • 2021
  • A series of novel PBI/SrTiO3 nanocomposite membranes composed of polybenzimidazole (PBI) and strontium titanate (SrTiO3) with a perovskite structure were fabricated with various concentrations of SrTiO3 through a solution casting method. Various characterization techniques such as proton nuclear magnetic resonance, thermogravimetric analysis, atomic force microscopy (AFM) and AC impedance spectroscopy were used to investigate the chemical structure, thermal, phosphate absorption and morphological properties, and proton conductivity of the fabricated nanocomposite membranes. The optimized PBI/SrTiO3-8 polymer nanocomposite membrane containing 8wt% of SrTiO3 showed a higher proton conductivity of 7.95 × 10-2 S/cm at 160℃ compared to other nanocomposite membranes. The PBI/SrTiO3-8 composite membrane also showed higher thermal stability compared to pristine PBI. In addition, the roughness change of the polymer composite membrane was also investigated by AFM. Based on these results, nanocomposite membranes based on perovskite structures are expected to be considered as potential candidates for high-temperature PEM fuel cell applications.