• Title/Summary/Keyword: nanoclusters

Search Result 57, Processing Time 0.027 seconds

New Mechanism of Thin Film Growth by Charged Clusters

  • Hwang, Nong-Moon;Kim, Doh-Yeon
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1999.06a
    • /
    • pp.115-127
    • /
    • 1999
  • The charged clusters or particles, which contain hundreds to thousands of atoms or even more, are suggested to form in the gas phase in the thin film processes such as CVD, thermal evaporation, laser ablation, and flame deposition. All of these processes are also used in the gas phase synthesis of the nanoparticles. Ion-induced or photo-induced nucleation is the main mechanism for the formation of these nanoclusters or nanoparticles inthe gas phase. Charged clusters can make a dense film because of its self-organizing characteristics while neutral ones make a porous skeletal structure because of its Brownian coagulation. The charged cluster model can successfully explain the unusual phenomenon of simultaneous deposition and etching taking place in diamond and silicon CVD processes. It also provides a new interpretation on the selective deposition on a conducting material in the CVDd process. The epitaxial sticking of the charged clusters on the growing surface is gettign difficult as the cluster size increases, resulting in the nanostructure such as cauliflowr or granular structures.

  • PDF

Self- and Artificially-Controlled ZnO Nanostructures by MOCVD (MOCVD을 이용하여 자발적 및 인위적으로 제어된 산화아연 나노구조)

  • Kim, Sang-Woo;Fujita, Shizuo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.9-10
    • /
    • 2005
  • We report on the fabrication and characterization of self- and artificially-controlled ZnO nanostructures have been investigated to establish nanostructure blocks for ZnO-based nanoscale device application. Systematic realization of self- and artificially-controlled ZnO nanostructures on $SiO_2/Si$ substrates was proposed and successfully demonstrated utilizing metalorganic chemical vapor deposition (MOCVD) in addition with a focused ion beam (FIB) technique. Widely well-aligned two-dimensional ZnO nanodot arrays ($4{\sim}10^4$ nanodots of 130-nm diameter and 9-nm height over $150{\sim}150{\mu}m^2$ with a period of 750 nm) have been realized by MOCVD on $SiO_2/Si$ substrates patterned by FIB. A low-magnification FIB nanopatterning mode allowed the periodical nanopatterning of the substrates over a large area in a short processing time. Ga atoms incorporated into the surface areas of FIB-patterned nanoholes during FIB engraving were found to play an important role in the artificial control of ZnO, resulting in the production of ZnO nanodot arrays on the FIB-nanopatterned areas. The nanodots evolved into dot clusters and rods with increasing MOCVD growth time.

  • PDF

Ab initio DFT studies on dimerization and one-dimensional (1-D) polymerization of M@$Au_{12}$ (M = W, Mo) clusters

  • Park, So-Ra;Kim, Gunn;Kwon, Young-Kyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.271-271
    • /
    • 2010
  • Using ab initio density functional theory, we investigate the dimerization and one-dimensional (1-D) polymerization of metal-encapsulated gold nanoclusters, M@$Au_{12}$ (M=W, Mo) and their structural and electronic properties. M@$Au_{12}$ clusters with a magic number 13 can form icosahedral and cuboctahedral structures. We consider various dimer configurations with different compounds and symmetries to find the most stable dimer structure in each case. Au atoms in the one cluster, which participate directly in dimerization, tend to form triangular bonds together with counterpart Au atoms in the other. It is found that both M@$Au_{12}$ and M@$Au_{12}$ clusters are stabilized by about 3 eV due to dimerization. We also calculate and compare the electronic and magnetic properties of different dimerized clusters. Based on our investigation on dimerization, we further study on 1-D polymerization of M@$Au_{12}$ with different compounds and symmetries. We will also discuss their formation energies as well as their electronic and magnetic properties.

  • PDF

Synthesis of diameter-controlled carbon nanotubes via structural modification of Al2O3 supporting layer

  • Kim, Soo-Youn;Song, Woo-Seok;Kim, Min-Kook;Jung, Woo-Sung;Choi, Won-Chel;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.286-286
    • /
    • 2010
  • The lack of homogeneously sized single-walled carbon nanotubes (SWNTs) hinders their many applications because properties of SWNTs, in particular electrical conduction, are highly dependent on the diameter and chirality. Therefore, the preferential growth of SWNTs with predetermined diameters is an ultimate objective for applications of SWNTs-based nanoelectronics. It has been previously emphasized that a catalyst size is the one crucial factor to determine the CNTs diameter in chemical vapor deposition (CVD) process, giving rise to several attempts to obtain size-controllable catalyst by diverse methods, such as solid supported catalyst, metal-containing molecular nanoclusters, and nanostructured catalytic layer. In this work, diameter-controlled CNTs were synthesized using a nanostructured catalytic layer consisting of Fe/Al2O3/Si substrate. The CNTs diameter was controlled by structural modification of Al2O3 supporting layer, because Al2O3 supporting layer can affect agglomeration phenomenon induced by heat-driven surface diffusion of Fe catalytic nanoparticles at growth temperature.

  • PDF

Design of Nanocluster Based Material with Catalytic Properties

  • Tadachika Nakayama;Kim, Chang-Yeoul;Tohru Sekino;Choa, Yong-Ho;Takafumi Kusunose;Yamato Hayashi;Koichi Niibara
    • Journal of Powder Materials
    • /
    • v.8 no.3
    • /
    • pp.197-200
    • /
    • 2001
  • Modified inert gas condensation method was used to produce the nanocluster composites of $CuO/CeO_2$. High-resolution TEM, SEM and catalytic measurements have been used to characterize the samples and study the synergistic effect between the CuO phase and $CeO_2$(ceria) support. By varying the He pressure, the heating temperature and configuration of the heating boats inside the modified gas condensation chamber, nanoclusters of varying sizes, shapes and composition can be produced. The composition and nanostructured morphology were shown to influence the catalytic properties of the system. A copper content around 10 at% with a morphology that favors high-energy surfaces of ceria is shown to be beneficial for a high catalytic activity.

  • PDF

New mechanism of thin film growth by charged clusters

  • Hwang, Nong-Moon;Kim, Doh-Yeon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.3
    • /
    • pp.289-294
    • /
    • 1999
  • The charged clusters or particles, which contain hundreds to thousands of atoms or even more, are suggested to from in the gas phase in the thin film processes such as CVD, thermal evaporation, laser ablation, and flame deposition. All of these processes are also phase synthesis of the nanoparticels. Ion-induced or photo-induced nucleation is the main mechanism for the formation of these nanoclusters or nanoparticles in the gas phase. Charge clusters can make a dense film because of its self-organizing characteristics while neutral ones make a porous skeletal structure because of its Brownian coagulation. The charged cluster model can successfully explain the unusual phenomenon of simultaneous deposition and etching taking place in diamond and silicon CVD processes. It also provides a new interpretation on the selective deposition on a conducting material in the CVD process. The epitaxial sticking of the charged clusters on the growing surface is getting difficult as the cluster size increases, resulting in the nanostructure such as cauliflower or granular structures.

  • PDF

Branched DNA-based Synthesis of Fluorescent Silver Nanocluster

  • Park, Juwon;Song, Jaejung;Park, Joonhyuck;Park, Nokyoung;Kim, Sungjee
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.1105-1109
    • /
    • 2014
  • While single strand DNAs have been widely used for the scaffold of brightly fluorescent silver nanoclusters (Ag NCs), double strand DNAs have not been as successful. Herein, we report a novel synthetic approach for bright Ag NCs using branched double strand DNAs as the scaffolds for synthesis. X-shaped DNA (X-DNA) and Y-shaped DNA (Y-DNA) effectively stabilized Ag NCs, and both X-DNA and Y-DNA resulted in brightly fluorescent Ag NCs. The concentration and molar ratio of silver and DNA were found important for the fluorescence efficiency. The brightest Ag NC with the photoluminescence quantum efficiency of 19.8% was obtained for the reaction condition of 10 ${\mu}M$ X-DNA, 70 ${\mu}M$ silver, and the reaction time of 48 h. The fluorescence lifetime was about 2 ns for the Ag NCs and was also slightly dependent on the synthetic condition. Addition of Cu ions at the Ag NC preparations resulted in the quenching of Ag NC fluorescence, which was different to the brightening cases of single strand DNA stabilized Ag NCs.

Fabrication of Au Nanoparticle for Au-conjugate Immuno Chemistry Probe (Au-conjugate 면역화학 진단용 금 나노입자 제조)

  • Park, Sung-Tae;Lee, Kwang-Min
    • Korean Journal of Materials Research
    • /
    • v.13 no.8
    • /
    • pp.550-554
    • /
    • 2003
  • Current nanogold cluster synthesized by chemical routine with 11 or 55 atoms of gold has been widely used for immuno chemistry probe as a form of nanocluster conjugated with biomolecules. It would be an undeveloped region that the 1 nm size of nanogold could be made by materials engineering processing. Therefore, objective of this study is to minimize the size of gold nanocluster as a function of operating temperature and chamber pressure in inert gas condensation (IGC) processing. Evaporation temperature was controlled by input current from 50 A to 65 A. Chamber pressure was controlled by argon gas with a range of 0.05 to 2 torr. The gold nanocluster by IGC was evaluated by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The gold nanocluster for TEM analysis was directly sampled with special in-situ method during the processing. Atomic force microscopy (AFM) was used to observe 3-D nanogold layer surfaces on a slide glass for the following biomolecule conjugation step. The size of gold nanoclusters had a close relationship with the processing condition such as evaporation temperature and chamber pressure. The approximately 1 nm size of nanogold was obtained at the processing condition for 1 torr at $1124 ^{\circ}C$.

Recent progress in the synthesis of luminescent copper clusters

  • Zhou, Shaochen;Wang, Fu;Wang, Chuanyi
    • Advances in nano research
    • /
    • v.4 no.2
    • /
    • pp.113-128
    • /
    • 2016
  • Luminescent metallic clusters have attracted great interest due to their unique optical, electronic and chemical features. Comparing with intensively studied Au and Ag Clusters, Cu clusters are superior in the aspects of cost and wide industrial demanding. However, tiny copper clusters are extremely prone to aggregate and undergo susceptibility of oxidation, thereby the synthesis of fluorescent zero valent copper clusters is rather challenging. In this review, synthetic strategies towards luminescent copper clusters, including macromolecule-protection and micro molecule-capping, have been systematically surveyed. Both "bottom-up" and "top-down" synthetic routes are found to be effective in fabricating luminescent copper clusters, some of which are quite stable and possess decent luminescence quantum yields. In general, the synthesis of fluorescent copper clusters remains at its infant stage. A great deal of effort on developing novel and economic synthetic routes to produce bright and stable copper clusters is highly expected in future.

A novel approach for manufacturing oxide dispersion strengthened (ODS) steel cladding tubes using cold spray technology

  • Maier, Benjamin;Lenling, Mia;Yeom, Hwasung;Johnson, Greg;Maloy, Stuart;Sridharan, Kumar
    • Nuclear Engineering and Technology
    • /
    • v.51 no.4
    • /
    • pp.1069-1074
    • /
    • 2019
  • A novel fabrication method of oxide dispersion strengthened (ODS) steel cladding tubes for advanced fast reactors has been investigated using the cold spray powder-based materials deposition process. Cold spraying has the potential advantage for rapidly fabricating ODS cladding tubes in comparison with the conventional multi-step extrusion process. A gas atomized spherical 14YWT (Fe-14%Cr, 3%W, 0.4%Ti, 0.2% Y, 0.01%O) powder was sprayed on a rotating cylindrical 6061-T6 aluminum mandrel using nitrogen as the propellant gas. The powder lacked the oxygen content needed to precipitate the nanoclusters in ODS steel, therefore this work was intended to serve as a proof-of-concept study to demonstrate that free-standing steel cladding tubes with prototypical ODS composition could be manufactured using the cold spray process. The spray process produced an approximately 1-mm thick, dense 14YWT deposit on the aluminum-alloy tube. After surface polishing of the 14YWT deposit to obtain desired cladding thickness and surface roughness, the aluminum-alloy mandrel was dissolved in an alkaline medium to leave behind a free-standing ODS tube. The as-fabricated cladding tube was annealed at $1000^{\circ}C$ for 1 h in an argon atmosphere to improve the overall mechanical properties of the cladding.