• Title/Summary/Keyword: nanoaggregates

Search Result 6, Processing Time 0.02 seconds

Optical Cmharacterization of Dihydrotetraphenylsilole and Nanoaggregates (Dihydrotetraphenylsilole 및 나노응집체의 광학적 특성)

  • Lee, Sung Gi;Yang, Jinseok;Choi, Tae-Eun;Han, Joungmin;Sohn, Honglae
    • Journal of Integrative Natural Science
    • /
    • v.2 no.1
    • /
    • pp.32-36
    • /
    • 2009
  • The purpose of this project is the synthesis of dihydrosilole and its optical characterization for their applications. Dihydrosilole was synthesized from the reduction reaction of either dichlorosilole or chlorohydrosilole with lithium aluminium hydride. The reaction yield for the dihydrosilole through the latter method was higher. The optical characteristics and AIEE effect of dihydrosilole nanoaggregates was investigated for the purpose of increasing the photoluminescence efficiency. Photoluminescence efficiency of dihydrosilole nanoaggregates increased about 100 times compared to that of molecular state.

  • PDF

Fabrication of nanoaggregates of triple hydrophilic block copolymers by binding of ionic surfactants

  • Khanal, Anil;Yusa, Shin-Ichi;Nakashima, Kenichi
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.302-302
    • /
    • 2006
  • Nanoaggregates of triple hydrophilic block copolymers comprised of poly(ethylene oxide), poly(sodium 2-acrylamido)-2-methylpropanesulfonate), and poly(methacrylic acid) (PEO-PAMPS-PMAA) and the cationic surfactant, dodecyltrimethylammonium chloride (DTAC) have been fabricated. The formation of $^{\circ}^{\circ}$the nanoaggregates is based on electrostatic interaction of sulfonate and carboxylate groups of PAMPS and PMAA blocks with the cationic surfactant, which results in insolubilization of these blocks. The formation of micelle is observed by dynamic light scattering measurements. Binding of DTAC to the anionic blocks of PEO-PAMPS-PMAA is confirmed by electrophoresis measurements.

  • PDF

Production of Platinum Nanoparticles and Nanoaggregates Using Neurospora crassa

  • Castro-Longoria, E.;Moreno-Velasquez, S.D.;Vilchis-Nestor, A.R.;Arenas-Berumen, E.;Avalos-Borja, M.
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.7
    • /
    • pp.1000-1004
    • /
    • 2012
  • Fungal biomass and fungal extract of the nonpathogenic fungus Neurospora crassa were successfully used as reducing agents for the biosynthesis of platinum nanoparticles (PtNPs). The experiment was carried out by exposing the fungal biomass or the fungal extract to a 0.001 M precursor solution of hexachloroplatinic(IV) acid ($H_2PtCl_6$). A change of color of the biomass from pale yellow to dark brown was the first indication of possible formation of PtNPs by the fungus. Subsequent analyses confirmed the intracellular biosynthesis of single PtNPs (4-35 nm in diameter) and spherical nanoaggregates (20-110 nm in diameter). Using the fungal extract, similar results were obtained, producing rounded nanoaggregates of Pt single crystals in the range of 17-76 nm.

Photoluminescence Characteristics of p-Phenylene Vinylene and Its Derivatives in Solution and in Nanoaggregates

  • Eom, Intae;Lim, Seon Jeong;Park, Soo Young;Joo, Taiha
    • Rapid Communication in Photoscience
    • /
    • v.4 no.3
    • /
    • pp.70-72
    • /
    • 2015
  • Oligomers of p-phenylene vinylene and its derivatives have drawn much attention due to their unusual emission characteristics of showing increased emission when they form into nanoparticles. We have investigated the optical properties of the oligo-(p-phenylene vinylene) and its cyano-substituted derivatives in solution and in nanoaggregate media by femtosecond and picosecond time resolved fluorescence as well as stationary spectroscopies. All the spectroscopic data are consistent with the conclusion that the cyano substitution on the ${\beta}$-position of oligo-(p-phenylene vinylene) leads to breakage of the otherwise planar structure of cyano-unsubstituted molecules, which opens up an extremely efficient, as fast as 100 fs, non-radiative relaxation channel of the excited state. Formation of the nanoaggregates reverts the effect to make the molecules planar and to block the non-radiative relaxation channel. Therefore, concerning the applications in organic electroluminescent devices and organic light emitting diodes, substitution by the cyano group is not advantageous, although such modification should be useful in respect of controlling fluorescence intensity in different media.

Controllable Biogenic Synthesis of Intracellular Silver/Silver Chloride Nanoparticles by Meyerozyma guilliermondii KX008616

  • Alamri, Saad A.M.;Hashem, Mohamed;Nafady, Nivien A.;Sayed, Mahmoud A.;Alshehri, Ali M.;El-Shaboury, Gamal A.
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.6
    • /
    • pp.917-930
    • /
    • 2018
  • Intracellular synthesis of silver/silver chloride nanoparticles (Ag/AgCl-NPs) using Meyerozyma guilliermondii KX008616 is reported under aerobic and anaerobic conditions for the first time. The biogenic synthesis of Ag-NP types has been proposed as an easy and cost-effective alternative for various biomedical applications. The interaction of nanoparticles with ethanol production was mentioned. The purified biogenic Ag/AgCl-nanoparticles were characterized by different spectroscopic and microscopic approaches. The purified nanoparticles exhibited a surface plasmon resonance band at 419 and 415 nm, confirming the formation of Ag/AgCl-NPs under aerobic and anaerobic conditions, respectively. The planes of the cubic crystalline phase of the Ag/AgCl-NPs were confirmed by X-ray diffraction. Fourier-transform infrared spectra showed the interactions between the yeast cell constituents and silver ions to form the biogenic Ag/AgCl-NPs. The intracellular Ag/AgCl-NPs synthesized under aerobic condition were homogenous and spherical in shape, with an approximate particle size of 2.5-30nm as denoted by the transmission electron microscopy (TEM). The reaction mixture was optimized by varying reaction parameters, including temperature and pH. Analysis of ultrathin sections of yeast cells by TEM indicated that the biogenic nanoparticles were formed as clusters, known as nanoaggregates, in the cytoplasm or in the inner and outer regions of the cell wall. The study recommends using the biomass of yeast that is used in industrial or fermentation purposes to produce Ag/AgCl-NPs as associated by-products to maximize benefit and to reduce the production cost.