• 제목/요약/키워드: nano-wire

검색결과 187건 처리시간 0.025초

액중 전기선 폭발 공정을 이용한 Pt/alloy 하이브리드 나노입자의 제조 및 그 특성 (Synthesis of Pt/alloy Nanoparticles by Electrical Wire Explosion in Liquid Media and its Characteristics)

  • 구혜영;윤중열;양상선;이혜문
    • 한국입자에어로졸학회지
    • /
    • 제8권2호
    • /
    • pp.83-88
    • /
    • 2012
  • The electrical wire explosion process in liquid media is promising for nano-sized metal and/or alloy particles. The hybrid Pt/Fe-Cr-Al and Pt/Ni-Cr-Fe nanoparticles for exhaust emission control system are synthesized by electrical wire explosion process in liquid media. The alloy powders have spherical shape and nanometer size. According to the wire component, while Pt/Fe-Cr-Al nanoparticles are shown the well dispersed Pt on the Fe-Cr-Al core particle, Pt/Ni-Cr-Fe nanoparticles are shown the partially separated Pt on the Ni-Cr-Fe core particle. Morphologies and component of two kinds of hybrid nano catalyst particles were characterized by transmission electron microscope and energy dispersive X-ray spectroscopy analysis.

금망임펠러를 이용한 교반조에서의 교반소요동력 특성 (Characteristic of Power Consumption in Agitated Vessel Using Wire Gauge Impeller)

  • 김문갑;이영세
    • 한국산업융합학회 논문집
    • /
    • 제14권2호
    • /
    • pp.73-78
    • /
    • 2011
  • Power consumption for wire gauge impeller in cylindrical agitated vessel was measured over a wide range of Reynolds number from laminar to turbulent flow regions. The power correlation were obtained agitation power input of WM4 at gassing condition in turbulent region, at gassing condition in transient region and at gassing condition in laminar region. Also the compared with effect of impeller diameter and blade width on agitation power input at gassing condition in turbulent region, at gassing condition in transient region and at gassing condition in laminar region.

새로운 게터소재로서의 금속 나노 분말 (Metal Nano Powders as a New Getter Material)

  • 김원백;박제신;서창열;장한권;이재천;박미영
    • 한국분말재료학회지
    • /
    • 제14권1호
    • /
    • pp.56-62
    • /
    • 2007
  • Getter property of nano-sized metallic powders was evaluated as a possible candidate for the future getter material. For the purpose, Ti powders of about 50 nm were prepared by electrical wire explosion. Commercial Ti powders of about 22 micrometer were tested as well for comparison. The room-temperature hydrogen-sorption speed of nano-sized Ti powders was $1.34\;L/sec{\cdot}cm^{2}$ which was more than 4 times higher than that of micron-sized ones. The value is comparable to or even higher than those of commercial products. Its sorption speed increases with activation temperature up to $500^{\circ}C$ above which it deteriorates due to low-temperature sintering effect of nano-sized particles.

액중 전기선 폭발법에 의한 Ni-free Fe계 나노 합금분말의 제조: 2. 용매의 영향 및 제조 방법에 따른 분말입자의 비교 (Fabrication of Ni-free Fe-based Alloy Nano Powder by Pulsed Wire Evaporation in Liquid: Part 2. Effect of Solvent and Comparison of Fabricated Powder owing to Fabrication Method)

  • 류호진;이용희;손광욱;공영민;김진천;김병기;윤중열
    • 한국분말재료학회지
    • /
    • 제18권2호
    • /
    • pp.112-121
    • /
    • 2011
  • This study investigated the effect of solvent on the fabrication of Ni-free Fe-based alloy nano powders by employing the PWE (pulsed wire evaporation) in liquid and compared the alloy particles fabricated by three different methods (PWE in liquid, PWE in Ar, plasma arc discharge), for high temperature oxidation-resistant metallic porous body for high temperature soot filter system. Three different solvents (ethanol, acetone, distilled water) of liquid were adapted in PWE in liquid process, while X-ray diffraction (XRD), field emission scanning microscope (FE-SEM), and transmission electron microscope (TEM) were used to investigate the characteristics of the Fe-Cr-Al nano powders. The alloy powder synthesized by PWE in ethanol has good particle size and no surface oxidation compared to that of distilled water. Since the Fe-based alloy powders, which were fabricated by PWE in Ar and PAD process, showed surface oxidation by TEM analysis, the PWE in ethanol is the best way to fabricate Fe-based alloy nano powder.

Correlation Between Lateral Photovoltaic Effect and Conductivity in p-type Silicon Substrates

  • Lee, Seung-Hoon;Shin, Muncheol;Hwang, Seongpil;Park, Sung Heum;Jang, Jae-Won
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권6호
    • /
    • pp.1845-1847
    • /
    • 2013
  • The lateral photovoltaic effect (LPE) can be observed in semiconductors by irradiating a light spot position between electrodes on sample's surface. Because lateral photovoltaic voltage (LPV) is sensitively changed by light spot position, a LPE device has been tried as a position-sensitive detector. This study discusses the correlation between LPV and conductivity in p-type silicon and nano-structured Au deposited p-type silicon (nano-Au silicon), respectively. Conductivity measurement of the sample was carried out using the four-wire method to eliminate contact resistance, and conductivity dependence on LPV was simultaneously measured by changing the light irradiation position. The result showed a strong correlation between conductivity and LPV in the p-type silicon sample. The correlation coefficient was 0.87. The correlation coefficient between LPV and conductivity for the nano-Au silicon sample was 0.41.

Synthesis and Compaction of Al-based Nanopowders by Pulsed Discharge Method

  • Rhee, Chang-Kyu;Lee, Geun-Hee;Kim, Whung-Whoe
    • 한국분말재료학회지
    • /
    • 제9권6호
    • /
    • pp.433-440
    • /
    • 2002
  • Synthesis and compaction of Al-base nano powders by pulsed discharge method were investigated. The aluminum based powders with 50 to 200 nm of diameter were produced by pulsed wire evaporation method. The powders were covered with very thin oxide layer. The perspective process for the compaction and sintering of nanostructured metal-based materials stable in a wide temperature range can be seen in the densification of nano-sized metal powders with uniformly distributed hard ceramic particles. The promising approach lies in utilization of natural uniform mixtures of metal and ceramic phases, e.g. partially oxidized metal powders as fabricated in our synthesis method. Their particles consist of metal grains coated with oxide films. To construct a metal-matrix material from such powder, it is necessary to destroy the hard oxide coatings of particles during the compaction process. This goal was realized in our experiments with intensive magnetic pulsed compaction of aluminum nanopowders passivated in air.

반도체 패키지용 Au Wire의 표면처리용 린스 성분에 따른 표면오염 비교 연구 (A Correlation Study on Surface Contamination of Semiconductor Packaging Au Wire by Components of Rinse)

  • 김하영;추연룡;임지수;박규식;김지원;강다희;라윤호;제갈석;윤창민
    • 접착 및 계면
    • /
    • 제25권2호
    • /
    • pp.63-68
    • /
    • 2024
  • 본 연구에서는 반도체 패키지용 와이어 본딩 공정에서 금(Au) wire의 표면처리에 적용되는 린스의 종류에 따른 Au wire의 오염 현상을 확인하고자 하였다. Au wire의 표면처리를 위해 실리콘(Si) 성분이 함유된 린스와 유기 계통으로만 이루어진 린스를 주로 사용하고 있으며, 실제 영향성을 확인하기 위해 두 종류의 1.0wt% 린스 용액으로 Au wire에 표면처리를 진행하였다. 이후, 반도체 공정에서 발생할 수 있는 Si 성분이 포함된 분진과의 반응성을 확인하기 위한 모사 실험을 진행하였다. 그 결과, optical microscopy(OM) 및 scanning electron microscopy(SEM) 분석을 통해 Si 성분이 함유된 린스로 표면처리한 Au wire의 경우 분진이 다량 흡착되었으며, 유기 계통으로만 이루어진 린스로 표면처리한 Au wire에는 소량의 분진이 흡착된 것을 확인하였다. 이는 Si 성분이 함유된 린스의 경우 상대적으로 극성을 띠기에, 주성분이 극성인 분진과 극성 상호작용을 일으키기 때문이다. 따라서 Si 성분이 존재하지 않는 린스를 사용하여 Au wire를 표면처리할 경우 분진에 의한 오염 현상이 감소하여 실제 와이어 본딩 공정에서 불량률을 낮추는 효과를 볼 수 있을 것으로 기대한다.

Effect of Ambient Temperature on Insulation Lifetime of Inverter Surge Resistant Enameled Wire Prepared with Organic/Inorganic Hybrid Nanocomposite

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • 제17권3호
    • /
    • pp.163-167
    • /
    • 2016
  • Inverter surge resistant enameled wire was prepared with an organic/inorganic hybrid nanocomposite, and the effect of ambient temperature on the insulation lifetime of the enameled wire in the form of twisted pair was studied by a withstanding voltage tester. The organic polymer was Polyesterimide-polyamideimide (EI/AI) and the inorganic material was a Nano-sized silica (average particle size : 15 nm). The enamel thickness was 50 μm and the ambient temperature was 100, 150, 200, and 250, respectively. Transmission electron microscopy (TEM) observation showed that Nano-sized Silica were evenly dispersed in EI/AI. There were many air gaps in a twisted pair, therefore, when voltage was applied to the twisted pair, enamel erosion took place in the air gap area because of partial discharge accordi, ng to Paschen’s law. As ambient temperature increased, insulation lifetime decreased according to Arrhenius relationship, which was explained by the increasing mobility of polymer chains in EI or AI. And insulation breakdown voltage value at 10 kHz was 1,864.5 sec (31.1 min), which is 1.9 times higher than at 20 kHz, 981.6 sec (16.4 min).

다이아몬드 와이어에 의해 절단된 다결정 실리콘 태양전지의 나노텍스쳐링 및 후속 식각 연구 (Nanotexturing and Post-Etching for Diamond Wire Sawn Multicrystalline Silicon Solar Cell)

  • 김명현;송재원;남윤호;김동형;유시영;문환균;유봉영;이정호
    • 한국표면공학회지
    • /
    • 제49권3호
    • /
    • pp.301-306
    • /
    • 2016
  • The effects of nanotexturing and post-etching on the reflection and quantum efficiency properties of diamond wire sawn (DWS) multicrystalline silicon (mc-Si) solar cell have been investigated. The chemical solutions, which are acidic etching solution (HF-$HNO_3$), metal assisted chemical etching (MAC etch) solutions ($AgNO_3$-HF-DI, HF-$H_2O_2$-DI) and post-etching solution (diluted KOH at $80^{\circ}C$), were used for micro- and nano-texturing at the surface of diamond wire sawn (DWS) mc-Si wafer. Experiments were performed with various post-etching time conditions in order to determine the optimized etching condition for solar cell. The reflectance of mc-Si wafer texturing with acidic etching solution showed a very high reflectance value of about 30% (w/o anti-reflection coating), which indicates the insufficient light absorption for solar cell. The formation of nano-texture on the surface of mc-Si contributed to the enhancement of light absorption. Also, post-etching time condition of 240 s was found adequate to the nano-texturing of mc-Si due to its high external quantum efficiency of about 30% at short wavelengths and high short circuit current density ($J_{sc}$) of $35.4mA/cm^2$.