• 제목/요약/키워드: nano-thick $TiO_{2-x}$

검색결과 4건 처리시간 0.023초

ALD 방법으로 제조된 나노급 $TiO_2$에 의한 자외선 차단효과 연구 (UV Absorption of Nano-thick $TiO_2$ Prepared Using an ALD)

  • 한정조;송오성;류지호;윤기정
    • 한국산학기술학회논문지
    • /
    • 제8권4호
    • /
    • pp.726-732
    • /
    • 2007
  • ALD (atomic layer deposition)법을 이용하여 두께를 달리한 $10{\sim}50nm-TiO_{2-x}/quartz$ 구조의 UV 기능성 박막을 형성시켰다. 박막의 두께는 우선 $10nm-TiO_{2-x}$를 성막한 후 엘립소미터로 두께를 확인하였고 나머지 두께는 증착시간을 선형적으로 조절하여 완성하였다. $TiO_2$ 박막 두께에 따른 생성상과 파장대별 흡수도, 가시광선의 투과율을 각각 X선 회절기, UV-VIS-IR 분석기, 접사용 디지털 카메라를 써서 확인하였다. ALD 법으로 제조된 $TiO_{2-x}$는 벌크 $TiO_2$에 비해 비정질 (amorphous)이면서 비정량적인 $TiO_{2-x}$ 형태임을 확인하였다. 380 nm와 415 nm의 흡수단을 보여 $3.0{\sim}3.2eV$의 밴드갭을 가지는 기존의 벌크 $TiO_2$와는 달리, 제작된 $TiO_{2-x}$ 박막은 197 nm와 250 nm의 부근에서 흡수단을 보이는 특징이 있었다. 따라서 장파장대의 자외선을 차단하는 기능을 가진 기존의 벌크 $TiO_2$와는 달리 ALD로 제작된 나노급 $TiO_2$는 단파장대의 자외선을 흡수할 수 있는 기능성이 있었고, 아울러 가시광선대에서 우수한 투과도를 보였다. 새로이 제안된 ALD를 이용한 나노급 $TiO_{2-x}$ 박막은 가시광선의 투과도는 향상시키면서 단파장대의 자외선을 효과적으로 흡수하는 기능성을 가졌음을 확인하였다.

  • PDF

Biocompatibility and Surface Characteristics of PEO-treated Ti-40Ta-xZr Alloys for Dental Implant Materials

  • Yu, Ji-Min;Cho, Han-Cheol
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2018년도 춘계학술대회 논문집
    • /
    • pp.23-23
    • /
    • 2018
  • In this study, new titanium alloys were prepared by adding elements such as tantalum (Ta), zirconium (Zr) and the like to complement the biological, chemical and mechanical properties of titanium alloys. The Ti-40Ta-xZr ternary alloy was formed on the basis of Ti-40Ta alloy with the contents of Zr in the contents of 0, 3, 7 and 15 wt. %. Plasma electrolytic oxidation (PEO), which combines high-voltage sparks and electrochemical oxidation, is a novel method to form ceramic coatings on light metals such as Ti and its alloys. These oxide film produced by the electrochemical surface treatment is a thick and uniform porous form. It is also composed of hydroxyapatite and calcium phosphate-based phases, so it has the characteristics of bone inorganic, non-toxic and very high bioactivity and biocompatibility. Ti-40Ta-xZr alloys were homogenized in an Ar atmosphere at $1050^{\circ}C$ for 1 hour and then quenched in ice water. The electrochemical oxide film was applied by using a power supply of 280 V for 3 minutes in 0.15 M calcium acetate monohydrate ($Ca(CH_3COO)_2{\cdot}H_2O$) and 0.02 M calcium glycerophosphate ($C_3H_7CaO_6P$) electrolyte. A small amount of 0.0075M zinc acetate and magnesium acetate were added to the electrolyte to enhance the bioactivity. The mechanical properties of the coated surface of Ti-40Ta-xZr alloys were evaluated by Vickers hardness, roughness test, and elastic modulus using nano-indentation, and the surface wettability was evaluated by measuring the contact angle of the coated surface. In addition, cell activation and differentiation were examined by cell culture of HEK 293 (Human embryonic kidney 293) cell proliferation. Surface properties of the alloys were analyzed by scanning electron microscopy(FE-SEM), EDS, and X-ray diffraction analysis (XRD).

  • PDF

전도성 AFM 탐침에 의한 YBa2Cu3O7-x 스트립 라인의 산화피막 형성 (Anodization Process of the YBa2Cu3O7-x Strip Lines by the Conductive Atomic Force Microscope Tip)

  • 고석철;강형곤;임성훈;한병성;이해성
    • 한국전기전자재료학회논문지
    • /
    • 제17권8호
    • /
    • pp.875-881
    • /
    • 2004
  • Fundamental results obtained from an atomic force microscope (AFM) chemically-induced direct nano-lithography process are presented, which is regarded as a simple method for fabrication nm-scale devices such as superconducting flux flow transistors (SFFTs) and single electron tunneling transistors (SETs). Si cantilevers with Pt coating and with 30 nm thick TiO coating were used as conducting AFM tips in this study. We observed the surfaces of superconducting strip lines modified by AFM anodization' process. First, superconducting strip lines with scan size 2 ${\mu}{\textrm}{m}$${\times}$2 ${\mu}{\textrm}{m}$ have been anodized by AFM technology. The surface roughness was increased with the number of AFM scanning, The roughness variation was higher in case of the AFM tip with a positive voltage than with a negative voltage in respect of the strip surface. Second, we have patterned nm-scale oxide lines on ${YBa}-2{Cu}_3{O}_{7-x}$ superconducting microstrip surfaces by AFM conductive cantilever with a negative bias voltage. The ${YBa}-2{Cu}_3{O}_{7-x}$ oxide lines could be patterned by anodization technique. This research showed that the critical characteristics of superconducting thin films were be controlled by AFM anodization process technique. The AFM technique was expected to be used as a promising anodization technique for fabrication of an SFFT with nano-channel.

Effect of double pinning mechanism in BSO-added GdBa2Cu3O7-x thin films

  • Oh, J.Y.;Jeon, H.K.;Lee, J.M.;Kang, W.N.;Kang, B.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제19권3호
    • /
    • pp.13-17
    • /
    • 2017
  • We investigated the effect of self-assembled BSO nano-defects as pinning centers in BSO-added GdBCO films when the thicknesses of films were varied. 3.5 vol. % BSO-added GdBCO films with varying thicknesses from 200 nm to 1000 nm were deposited on $SrTiO_3$ (STO) substrate by using pulsed laser deposition (PLD) process. For the films with thicknesses of 400 nm and 600 nm, 'anomaly shoulders' in $J_c-H$ characteristic curves were observed near the matching field. The anomaly shoulders appeared in the field dependence of $J_c$ may be attributed to the existence of double pinning mechanisms in thin films. The fit to the pinning force density as a function of reduced field h ($H/H_{irr}$) using the Dew-Hughes' scaling law shows that both the 400 nm- and the 600 nm-thick films have double pinning mechanisms while the other films have a single pinning mechanism. These results indicate that the self-assembled property of BSO result in different role as pinning centers with different thickness.