• Title/Summary/Keyword: nano-systems

Search Result 998, Processing Time 0.024 seconds

Installation Damage Assessment of Geogrids by Laboratory Tester (실내 시험기에 의한 지오그리드의 시공 시 손상 평가)

  • Jeon, Han-Yong;Jin, Yong-Bum;Jang, Yeon-Soo;Yoo, Chung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.7
    • /
    • pp.77-86
    • /
    • 2007
  • Installation damage of 3 types of geogrids was evaluated with compaction condition by laboratory tester. This experimental was in accordance with ENV ISO 10722-1. First, soil distribution and water content were conducted. And then we changed cyclic loading time and type of geogrids as a factor of installation damage. The samples are woven, warp-knitted, welded type of 6, 8, 10T. This study aims to give an insight into the relationships between installation damage and cyclic loading time. The result of studies was that strength of the damaged geogrids can be closely correlated with the time of loading cycles. Especially, welded type shows slower slope than two types of geogrids due to coating materials. That means welded type is coated with PP (Polypropylene), but the other two types of geogrids are coated with PVC (Polyvinyl Chloride). To confirm another factor different method was performed. The size of soil was used between 9.5 mm and 23.5 m to compare initial experimental. Cyclic loading compaction is taken 200 times before installation test and the reason is that the reduction factor of this case by installation damage was higher than other compaction loading conditions.

Implementation of IoT-Based Irrigation Valve for Rice Cultivation (벼 재배용 사물인터넷 기반 물꼬 구현)

  • Byeonghan Lee;Deok-Gyeong Seong;Young Min Jin;Yeon-Hyeon Hwang;Young-Gwang Kim
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.6
    • /
    • pp.93-98
    • /
    • 2023
  • In paddy rice farming, water management is a critical task. To suppress weed emergence during the early stages of growth, fields are deeply flooded, and after transplantation, the water level is reduced to promote rooting and stimulate stem generation. Later, water is drained to prevent the production of sterile tillers. The adequacy of water supply is influenced by various factors such as field location, irrigation channels, soil conditions, and weather, requiring farmers to frequently check water levels and control the ingress and egress of water. This effort increases if the fields are scattered in remote locations. Automated irrigation systems have been considered to reduce labor and improve productivity. However, the net income from rice production in 2022 was about KRW 320,000/10a on average, making it financially unfeasible to implement high-cost devices or construct new infrastructure. This study focused on developing an IoT-Based irrigation valve that can be easily integrated into existing agricultural infrastructure without additional construction. The research was carried out in three main areas: Firstly, an irrigation valve was designed for quick and easy installation on existing agricultural pipes. Secondly, a power circuit was developed to connect a low-power Cat M1 communication modem with an Arduino Nano board for remote operation. Thirdly, a cloud-based platform was used to set up a server and database environment and create a web interface that users can easily access.

Progress in Nanofiltration-Based Capacitive Deionization (나노여과 기반 용량성 탈이온화의 진전)

  • Jeong Hwan Shim;Rajkumar Patel
    • Membrane Journal
    • /
    • v.34 no.2
    • /
    • pp.87-95
    • /
    • 2024
  • Recent studies explore a wide array of desalination and water treatment methods, encompassing membrane processes such as reverse osmosis (RO), nanofiltration (NF), and electrodialysis (ED) to advanced capacitive deionization (CDI) and its membrane variant (MCDI). Comparative analyses reveal ED's cost-effectiveness in low-salinity scenarios, while hybrid systems (NF-MCDI, RO-NF-MCDI) show improved salt removal and energy efficiency. Novel ion separation methods (NF-CDI, NF-FCDI) offer enhanced efficacy and energy savings. These studies also highlight the efficiency of these methods in treating complex wastewater specific to various industries. Environmental impact assessments emphasize the need for sustainability in system selection. Additionally, the integration of microfabricated sensors into membranes allows real-time monitoring, advancing technology development. These studies underscore the variety and promise of emerging desalination and water treatment technologies. They provide valuable insights for enhancing efficiency, minimizing energy usage, tackling industry-specific issues, and innovating to surpass conventional method limitations. The future of sustainable water treatment appears bright, with continual advancements focused on improving efficiency, minimizing environmental impact, and ensuring adaptability across diverse applications.

Implementation of a walking-aid light with machine vision-based pedestrian signal detection (머신비전 기반 보행신호등 검출 기능을 갖는 보행등 구현)

  • Jihun Koo;Juseong Lee;Hongrae Cho;Ho-Myoung An
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.1
    • /
    • pp.31-37
    • /
    • 2024
  • In this study, we propose a machine vision-based pedestrian signal detection algorithm that operates efficiently even in computing resource-constrained environments. This algorithm demonstrates high efficiency within limited resources and is designed to minimize the impact of ambient lighting by sequentially applying HSV color space-based image processing, binarization, morphological operations, labeling, and other steps to address issues such as light glare. Particularly, this algorithm is structured in a relatively simple form to ensure smooth operation within embedded system environments, considering the limitations of computing resources. Consequently, it possesses a structure that operates reliably even in environments with low computing resources. Moreover, the proposed pedestrian signal system not only includes pedestrian signal detection capabilities but also incorporates IoT functionality, allowing wireless integration with a web server. This integration enables users to conveniently monitor and control the status of the signal system through the web server. Additionally, successful implementation has been achieved for effectively controlling 50W LED pedestrian signals. This proposed system aims to provide a rapid and efficient pedestrian signal detection and control system within resource-constrained environments, contemplating its potential applicability in real-world road scenarios. Anticipated contributions include fostering the establishment of safer and more intelligent traffic systems.

Mission-Oriented Conceptional Design of the Cube Satellite CNU Laser Unity Bus (CLUB) for Ground-Space Laser Research (지상-우주 레이저 연구를 위한 큐브위성 CLUB(CNU Laser Unity Bus)의 임무 중심 개념설계)

  • Seok-Min Song;Ho Sub Song;Chae-Ryeong Kim;Young-In Kang;Yang-Ha Ju;Mansoo Choi;Hyung-Chul Lim;Yu Yi
    • Journal of Space Technology and Applications
    • /
    • v.4 no.1
    • /
    • pp.48-61
    • /
    • 2024
  • In this paper, we introduce the concept of the cube satellite Chungnam National University Laser Unity Bus (CLUB), which can provide an integrated infrastructure for various ground-space laser applications. With the advent of the new space era, the rapid expansion of space utilization has begun to reveal the limitations of conventional radio frequencies. As space missions diversify, lasers are garnering attention as a viable alternative. Between ground and space, lasers are applied in various fields including satellite laser ranging (SLR), laser weapons, and laser communication. However, laser used between the ground and space are significantly influenced by the Earth's atmosphere. Consequently, understanding the atmospheric effects on laser propagation is crucial. In particular, atmospheric turbulence, which refracts and distorts laser beams, intensifies closer to the Earth's surface, exerting a greater impact on the uplink than on the downlink. While downlink verification is facilitated by ground detection, verifying the uplink poses challenges due to the necessity of space-based detection. In response to these challenges, we propose the idea of cube satellite as a means to enhance understanding and verification of laser propagation in the uplink. Additionally, we present the results of conceptual design by analyzing requirements, focusing on mission design of the CLUB cube satellite, following the stages of systems engineering for systematic cube satellite development.

The Study on the Relationship between Changes of Rumen Microflora and Bloat in Jersey Cow (저지종 젖소의 반추위 내 미생물 균총 변화와 고창증 발병간의 상관관계 연구)

  • Kim, Sang Bum;Oh, Jong Seok;Jeong, Ha Yeon;Jung, Young Hun;Park, Beom Young;Ha, Seung Min;Im, Seok Ki;Lee, Sung Sill;Park, Ji Hoo;Park, Seong Min;Kim, Eun Tae
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.38 no.2
    • /
    • pp.106-111
    • /
    • 2018
  • This study was conducted to investigate the relationship between changes of rumen microflora and bloat in Jersey cow. Jersey cows (control age: 42 months, control weight: 558kg; treatment age: 29 months, treatment weight 507kg) were fed on the basis of dairy feeding management at dairy science division in National Institute of Animal Science. The change of microbial population in rumen was analyzed by using next generation sequencing (NGS) technologies due to metabolic disease. The diversity of Ruminococcus bromii, Bifidobacterium pseudolongum, Bifidobacterium merycicum and Butyrivibrio fibrisolvens known as major starch fermenting bacteria was increased more than 36-fold in bloated Jersey, while cellulolytic bacteria community such as Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefaciens was increased more than 12-fold in non-bloated Jersey. The proportion of bacteroidetes and firmicutes was 33.4% and 39.6% in non-bloated Jersey's rumen, while bacteroidetes and firmicutes were 24.9% and 55.1% in bloated Jersey's. In conclusion, the change of rumen microbial community, in particular the increase in starch fermenting bacteria, might have an effect to occur the bloat in Jersey cow.

Phase Behavior of Poly(methylmethacrylate) (PMMA) in Varions Solvents at High Pressure (고압상태의 다양한 용매 내에서 Poly(methylmethacrylate) (PMMA)의 상거동)

  • Kim, Je-Il;Yoo, Ki-Pung;Lim, Jong-Sung
    • Clean Technology
    • /
    • v.13 no.1 s.36
    • /
    • pp.28-33
    • /
    • 2007
  • We measured cloud points of Poly(methylmethacrylate) (PMMA) in various solvents using the high-pressure variable volume view cell apparatus. The solvents used for dissolving PMMA were chlorodifluoromethane (HCFC-22), dimethylether (DME), 1,1,1-trifluoroethane (HFC-143a), 1,1-difluoroethane (HFC-152a) and 1,1,1,2-tetrafluoroethane (HFC-134a), and the effect of $CO_2$ concentration on the phase behavior of $PMMA+HCFC-22+CO_2$ system and $PMMA+DME+CO_2$ system was observed. PMMA was dissolved well in HCFC-22 from about 340 K, 5MPa and in DME from about 300 K, 28MPa. However, PMMA was not dissolved at all up to 423.15 K, 160MPa in the other fluorine compound such as HFC-l43a, HFC-152a and HFC-134a. PMMA+HCFC-22, $PMMA+HCFC-22+CO_2$ and PMMA+DME systems exhibit the lower critical solution temperature (LCST) behavior, however, $PMMA+DME+CO_2$ system exhibits the upper critical solution temperature (UCST) behavior. In the $CO_2$ mixture, the cloud point pressure of PMMA was increased dramatically proportional to the amount of $CO_2$ added, and from this result, it was known that $CO_2$ could be used as an antisolvent for fabricating PMMA nano-particles. And the cloud point of PMMA could be controlled by changing the concentration of $CO_2$.

  • PDF

Potential Contamination Sources on Fresh Produce Associated with Food Safety

  • Choi, Jungmin;Lee, Sang In;Rackerby, Bryna;Moppert, Ian;McGorrin, Robert;Ha, Sang-Do;Park, Si Hong
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.1
    • /
    • pp.1-12
    • /
    • 2019
  • The health benefits associated with consumption of fresh produce have been clearly demonstrated and encouraged by international nutrition and health authorities. However, since fresh produce is usually minimally processed, increased consumption of fresh fruits and vegetables has also led to a simultaneous escalation of foodborne illness cases. According to the report by the World Health Organization (WHO), 1 in 10 people suffer from foodborne diseases and 420,000 die every year globally. In comparison to other processed foods, fresh produce can be easily contaminated by various routes at different points in the supply chain from farm to fork. This review is focused on the identification and characterization of possible sources of foodborne illnesses from chemical, biological, and physical hazards and the applicable methodologies to detect potential contaminants. Agro-chemicals (pesticides, fungicides and herbicides), natural toxins (mycotoxins and plant toxins), and heavy metals (mercury and cadmium) are the main sources of chemical hazards, which can be detected by several methods including chromatography and nano-techniques based on nanostructured materials such as noble metal nanoparticles (NMPs), quantum dots (QDs) and magnetic nanoparticles or nanotube. However, the diversity of chemical structures complicates the establishment of one standard method to differentiate the variety of chemical compounds. In addition, fresh fruits and vegetables contain high nutrient contents and moisture, which promote the growth of unwanted microorganisms including bacterial pathogens (Salmonella, E. coli O157: H7, Shigella, Listeria monocytogenes, and Bacillus cereus) and non-bacterial pathogens (norovirus and parasites). In order to detect specific pathogens in fresh produce, methods based on molecular biology such as PCR and immunology are commonly used. Finally, physical hazards including contamination by glass, metal, and gravel in food can cause serious injuries to customers. In order to decrease physical hazards, vision systems such as X-ray inspection have been adopted to detect physical contaminants in food, while exceptional handling skills by food production employees are required to prevent additional contamination.