• Title/Summary/Keyword: nano-size

Search Result 2,173, Processing Time 0.031 seconds

Effect of Non-ionic Igepal CO-520 in Sonochemical Synthesis of Monodisperse Fe3O4 Nanoparticles

  • Son, Vo Thanh;Phong, Le Van;Islam, Nazrul Md.;Hung, Tran Quang;Kim, Sa-Rah;Jeong, Jun-Ho;Kim, Cheol-Gi;Jeong, Jong-Ryul
    • Journal of Magnetics
    • /
    • v.15 no.3
    • /
    • pp.112-115
    • /
    • 2010
  • We have investigated a surfactant-assisted sonochemical approach to produce monodisperse $Fe_3O_4$ nanoparticles (NPs). The non-ionic surfactant Igepal CO-520 (Poly(oxyethylene)(5) nonylphenyl ether) has been used for the preparation of NPs and the effects on the NP size, size distribution, and magnetic properties have been studied. The $Fe_3O_4$ NPs were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and vibrating sample magnetometry (VSM). The results reveal that the NPs prepared by a Igepal CO-520-assisted sonochemical method exhibit a narrow range of size distributions and a high monodispersity compared to the NPs from the conventional sonochemical method. The analysis of NPs prepared in the presence of the surfactant suggested that it could be used not only as a protector to prevent the oxidation of Fe (II), but also as a controller to vary the size of the NPs.

Preparation of Ag Nano-Powder from Aqueous Silver Solution through Reductive Precipitation Method (환원침전법을 이용한 수용액으로부터 은 나노분말의 제조 연구)

  • Lee Hwa-Yaung;Oh Jong-Kee
    • Resources Recycling
    • /
    • v.14 no.6 s.68
    • /
    • pp.21-27
    • /
    • 2005
  • As one of the hydrometallurgical processes available in the recycling of silver-bearing wastes, the preparation of Ag nano-powder was investigated by a reductive precipitation reaction in silver solution using sodium formaldehydesulfoxylate and ascorbic acid as a reducing agent. Silver solution was prepared by dissolving silver nitrate with distilled water, and Tamol NN8906, PVP, SDS and caprylic acid were also used respectively as the dispersant to avoid the agglomeration of particles during the reductive reaction. Ag particles obtained from the reduction reaction from silver solution were characterized using the particle size analyzer and TEM to determine the particle size distribution and morphology. It was found that about $40\%$ excess of sodium formaldehydesulfoxylate was required to reduce completely silver ions in the solution. It alto appeared that the particle size generated with sodium formaldehydesulfoxylate was much greater than that with ascorbic acid. As far as the effect of dispersant on the Ag particles was concerned, the particle size distribution showed typically bimodal distribution in case of Tamol/FVP while very broad distribution ranged from 0.01 to $100{\mu}m$ appeared in case of SDS/caprylic acid.

Effect of Reaction Factors on the Fabrication of Nano-Sized Indium Oxide Powder by Spray Pyrolysis Process (분무열분해공정에 의한 인듐 산화물 나노 분말 제조에 미치는 반응인자들의 영향)

  • Yu Jae-Keun
    • Journal of Powder Materials
    • /
    • v.11 no.6 s.47
    • /
    • pp.493-502
    • /
    • 2004
  • In this study, nano-sized indium oxide powder with the average particle size below 100 nm is fab-ricated from the indium chloride solution by the spray pyrolysis process. The effects of the reaction temperature, the concentration of raw material solution and the inlet speed of solution on the properties of powder were studied. As the reaction temperature increased from 850 to $1000^{\circ}C$, the average particle size of produced powder increased from 30 to 100 nm, and microstructure became more solid, the particle size distribution was more irregular, the intensity of a XRD peak increased and specific surface area decreased. As the indium concentration of the raw material solution increased from 40 to 350 g/l, the average particle size of the powder gradually increased from 20 to 60 nm, yet the particle size distribution appeared more irregular, the intensity of a XRD peak increased and spe-cific surface area decreased. As the inlet speed of solution increased from 2 to 5 cc/min., the average particle size of the powder decreased and the particle size distribution became more homogeneous. In case of the inlet speed of 10 cc/min, the average particle size was larger and the particle size distribution was much irregular compared with the inlet speed of 5 cc/min. As the inlet speed of solution was 50 cc/min, the average particle size was smaller and microstructure of the powder was less solid compared with the inlet speed of 10 cc/min. The intensity of a XRD peak and the variation of specific area of the powder had the same tendency with the variation of the average par-ticle size.

Fabrication of the Nano-Sized Nickel Oxide Powder by Spray Pyrolysis Process

  • Yu, Jae-Keun;NamGoong, Hyun;Kim, Dong-Hee
    • Korean Journal of Materials Research
    • /
    • v.22 no.8
    • /
    • pp.426-432
    • /
    • 2012
  • This study involves using nickel chloride solution as a raw material to produce nano-sized nickel oxide powder with average particle size below 50 nm by the spray pyrolysis reaction. The influence of the inflow speed of raw material solution on the properties of the produced powder is examined. When the inflow speed of the raw material solution is at 2 ml/min., the average particle size of the powder is 15~25 nm and the particle size distribution is relatively uniform. When the inflow speed of the solution increases to 10 ml/min., the average particle size of the powder increases to about 25 nm and the particle size distribution becomes much more uneven. When the inflow speed of the solution increases to 20 ml/min., the average particle size of the powder increases in comparison to the case in which the inflow speed of the solution was 10 ml/min. However, the particle size distribution is very uneven, showing various particle size distributions ranging from 10 nm to 70 nm. When the inflow speed of solution increases to 50 ml/min., the average particle size of the powder decreases in comparison to the case in which the inflow speed was 20 ml/min., and the particle size distribution shows more evenness. As the inflow speed of the solution increases from 2 ml/min. to 20 ml/min., the XRD peak intensities gradually increase, while the specific surface area decreases. When the inflow speed of solution increases to 50 ml/min., the XRD peak intensities rather decrease, while the specific surface area increases.

Development of control technique of nano-sized pattern for electroplating (나노급 도금공정을 위한 미세패턴 제어기술의 개발)

  • Lee, Jae-Hong;Lee, Byoung-Wook;Lee, Kyung-Ho;Kim, Chang-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1576-1578
    • /
    • 2004
  • The alumina membrane with nano sized pore was prepared from aluminum by anodic oxidation to apply for storage equipment, gas sensor and stamper. The pore size and cell size of the pores are controlled by anodic oxidation voltage. The alumina thickness was controlled by etching process using 0.2M $H_3PO_4$. The thickness of alumina on Si wafer was very accurately controlled by anodic oxidation time. Nickel with nano-sized grain was electroplated on the Au layer on silicon wafer. The fabricated pores on alumina membrane was the thickness of $7{\sim}10{\mu}m$ with straight nano-sized pore of 307${\sim}$120nm. The alumina by the etching process shows smooth surface. The size of Ni grain was 130nm and 250nm for 10mA/$cm^2$and 20mA/$cm^2$of electroplating currents, respectively.

  • PDF

Characteristics of Fe Nano Powders Synthesized by Plasma Arc Discharge Process (플라즈마 아크 방전법으로 제조된 Fe 나노분말의 특성)

  • Park Woo-Young;Youn Cheol-Su;Yu Ji-Hun;Oh Young-Woo;Choi Chul-Jin
    • Korean Journal of Materials Research
    • /
    • v.14 no.7
    • /
    • pp.511-515
    • /
    • 2004
  • Fe nano powders were synthesized by plasma arc discharge (PAD) process and studied by means of X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM) and X-ray Photoelectron Spectroscopy (XPS). Pure Fe rod($99.9\%$) was used as a source of metallic vapor under argon and hydrogen mixed atmosphere. The synthesized Fe nano powders had nearly spherical shapes and core-shell type structures. The influence of process parameters on the structure and size was investigated. The powder size increased with increasing of the chamber pressure and input current. High hydrogen gas ratio in chamber atmosphere affected the particle size and amount of Fe nanopowder.

Effect of Slurry Characteristics on Nanotopography Impact in Chemical Mechanical Polishing and Its Numerical Simulation (기계.화학적인 연마에서 슬러리의 특성에 따른 나노토포그래피의 영향과 numerical시뮬레이션)

  • Takeo Katoh;Kim, Min-Seok;Ungyu Paik;Park, Jea-Gun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.63-63
    • /
    • 2003
  • The nanotopography of silicon wafers has emerged as an important factor in the STI process since it affects the post-CMP thickness deviation (OTD) of dielectric films. Ceria slurry with surfactant is widely applied to STI-CMP as it offers high oxide-to-nitride removal selectivity. Aiming to control the nanotopography impact through ceria slurry characteristics, we examhed the effect of surfactant concentration and abrasive size on the nanotopography impact. The ceria slurries for this study were produced with cerium carbonate as the starting material. Four kinds of slurry with different size of abrasives were prepared through a mechanical treatment The averaged abrasive size for each slurry varied from 70 nm to 290 nm. An anionic organic surfactant was added with the concentration from 0 to 0.8 wt %. We prepared commercial 8 inch silicon wafers. Oxide Shu were deposited using the plasma-enhanced tetra-ethyl-ortho-silicate (PETEOS) method, The films on wafers were polished on a Strasbaugh 6EC. Film thickness before and after CMP was measured with a spectroscopic ellipsometer, ES4G (SOPRA). The nanotopogrphy height of the wafer was measured with an optical interferometer, NanoMapper (ADE Phase Shift)

  • PDF

Preparation of Pt/C catalyst for PEM fuel cells using polyol process (Polyol Process를 통한 PEM Fuel Cell용 Pt/C촉매 제조)

  • Oh, Hyoung-Seok;Kim, Han-Sung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.443-446
    • /
    • 2006
  • Carbon-supported Platinum (Pt) is the potential electro-catalyst material for anodic and cathodic reactions in fuel cell. Catalytic activity of the metal strongly depends on the particle shape, size and distribution of the metal in the porous supportive network. Conventional preparation techniques based on wet impregnation and chemical reduction of the metal precursors often do not provide adequate control of particle size and shape. We have proposed a novel route for preparing nano sized Pt colloidal particles in solution by oxidation of ethylene glycol. These Pt nano particles were deposited on large surface area carbon support. The process of nano Pt colloid formation involves the oxidation of solvent ethylene glycol to mainly glycolic acid and the presence of its anion glycolate depends on the solution pH. In the process of colloidal Pt formation glycolate actsas stabilizer for the Pt colloidal particle and prevents the agglomeration of colloidal Pt particles. These mono disperse Pt particles in carbon support are found uniformly distributed in nearly spherical shape and the size distribution was narrow for both supported and unsupported metals. The average diameter of the Pt nano particle was controlled in the range off to 3 nm by optimizing reaction parameters. Transmission electron microscopy, CV and RRDE experiments were used to compliment the results.

  • PDF

Effect of Micro Casting and Plasma-etching on Polycaprolactone Film for Bone (뼈 재생을위한 폴리카프로락톤 필름에 대한 마이크로 캐스팅 및 플라즈마 에칭)

  • Lee, Jae-Yun;Yang, Ji-Hun;Kim, Geun-Hyeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.24-24
    • /
    • 2018
  • One of the challenges in tissue engineering is the design of optimal biomedical scaffolds, which can be governed by topographical surface characteristics, such as size, shape, and direction. Of these properties, we focus on the effects of nano - to micro - sized hierarchical surface. To fabricate the hierarchical surface structure on poly(${\varepsilon}$-caprolactone) (PCL) film, we employed a nano/micro-casting technique (NCT) and modified plasma process. The micro size topography of PCL film was controlled by sizes of the micro structures on lotus leaf. Also, the nano-size topography and hydrophilicity of PCL film were controlled by modified plasma process. After the plasma treatment, the hydrophobic property of the PCL film was significantly changed into hydrophilic property, and the nano-sized structure was well developed, as increasing the plasma exposure time and applied power. The surface properties of the modified PCL film were investigated in terms of initial cell morphology, attachment, and proliferation using osteoblast-like-cells (MG63). In particular, initial cell attachment, proliferation and osteogenic differentiation in the hierarchical structure were enhanced dramatically compared to those of the smooth surface.

  • PDF

The Quality Investigation of 6H-SiC Crystals Grown by a Conventional PVT Method with Various SiC Powders

  • Yeo, Im-Gyu;Lee, Tae-Woo;Lee, Won-Jae;Shin, Byoung-Chul;Choi, Jung-Woo;Ku, Kap-Ryeol;Kim, Young-Hee
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.2
    • /
    • pp.61-64
    • /
    • 2010
  • In this paper, we investigate the quality difference of SiC crystals grown by a conventional physical vapor transport method using various SiC powders. While the growth rate was revealed to be dependent upon the particle size of the SiC powder, the growth rate of SiC bulk crystals grown using SiC powder with a smaller particle size (20 nm) was definitely higher than those using lager particle sizes with $0.1-0.2\;{\mu}m$ and $1-10\;{\mu}m$, respectively. All grown 2 inch SiC single crystals were proven to be the polytype of 6H-SiC and the carrier concentration levels of about $10^{17}\;cm^3$ were determined from Hall measurements. It was revealed that the particle size and process method of SiC powder played an important role in obtaining a good quality, high growth rate, and to reduce growth temperature.