• 제목/요약/키워드: nano-plates

검색결과 151건 처리시간 0.023초

다양한 형태 및 구조의 망간산화물 및 망간수산화물 전구체로부터 합성한 LiMn2O4양극의 전기화학적 특성 연구 (Electrochemical Characteristics of LiMn2O4 Cathodes Synthesized from Various Precursors of Manganese Oxide and Manganese Hydroxide)

  • 이종문;김주성;홍순기;이정진;안한철;조원일;모선일
    • 전기화학회지
    • /
    • 제15권3호
    • /
    • pp.172-180
    • /
    • 2012
  • 리튬이온전지의 양극소재인 $LiMn_2O_4$를 다양한 모양과 크기의 망간산화물 및 망간수산화물 전구체를 사용해서 합성하였다. 첫 번째 단계로 수열합성법이나 침전법을 사용하여 ${\alpha}-MnO_2$, ${\beta}-MnO_2$, $Mn_3O_4$, amorphous $MnO_2$$Mn(OH)_2$ 등의 전구체를 합성하였고, 두 번째 단계로 이들 전구체로부터 고상법을 사용하여 다양한 형태의 $LiMn_2O_4$를 제조하였다. 합성된 $LiMn_2O_4$의 특성은 주사전자현미경과 XRD Rietveld구조분석을 통해 확인하고, Li coin cell로 조립하여 전극특성을 측정하였다. 500 nm크기의 팔면체(nano-octahedron) $LiMn_2O_4$가 1 C-rate와 50 C-rate에서 각각 107 mAh $g^{-1}$, 99 mAh $g^{-1}$의 높은 전지용량을 나타내며, 다양한 방전전류에서 가장 우수한 전기화학적 특성을 보인다. 3차원 팔면체 결정입자가 1차원 막대모양이나 2차원 판상모양의 다른 형태의 $LiMn_2O_4$보다 구조적 안정성도 우수한 것으로 평가된다. 또한 10 C-rate의 높은 전류로 500회 충 방전이 진행된 후에도 nano-octahedron $LiMn_2O_4$는 단지 5%의 용량감소(95% capacity retention)로 우수한 전극특성을 나타냈다.

고온 양성자 교환막 연료전지용 열가소성 탄소 복합재료 분리판 개발 (Development of Thermoplastic Carbon Composite Bipolar Plates for High-temperature PEM Fuel Cells)

  • 임준우;김민국;이대길
    • Composites Research
    • /
    • 제29권5호
    • /
    • pp.243-248
    • /
    • 2016
  • 열경화성 탄소 섬유 복합재료 분리판은 높은 기계적 특성뿐만 아니라 높은 내산성을 갖으나, 높은 제조단가 및 낮은 자체저항이 극복해야 할 가장 큰 장애물이다. 따라서 본 연구에서는, 열가소성 폴리머를 복합재료 분리판의 기지로 적용하여 분리판 생산성과 자체저항이 모두 증가된 열가소성 탄소 복합재료 분리판을 개발하였다. 전기 전도도 및 기계 강도를 증가시기키 위하여 평직 형태의 탄소 섬유 직물을 사용하였으며, 분리판의 자체 저항을 감소시키기 위하여 전도성 나노입자를 열가소성 기지에 혼합하였다. 개발된 분리판의 면적 비저항 및 기계물성을 고온 연료전지 작동 온도 및 스택의 체결압에 따라 측정하였다.

Distribution of poly-${\gamma}$-glutamate (${\gamma}$-PGA) producers in Korean fermented foods, Cheongkukjang, Doenjang, and Kochujang

  • Kang, Seong-Eun;Rhee, Joo-Hyung;Park, Chung;Sung, Moon-Hee;Lee, In-Hyung
    • Food Science and Biotechnology
    • /
    • 제14권5호
    • /
    • pp.704-708
    • /
    • 2005
  • Poly-y-glutamate (${\gamma}$-PGA) has great potential as a biodegradable polymer in a broad range of industrial fields such as food, cosmetics, medicine and water treatment. In order to isolate ${\gamma}$-PGA producers that are suitable for specific industrial applications, 653 Bacillus-like strains were isolated from 439 varieties of three Korean fermented foods, Cheongkukjang, Doenjang, and Kochujang, which were collected from different regions across Korea. A very high level of ${\gamma}$-PGA production was demonstrated in 4.7%, 1.8%, and 3.0% of the Bacillus-like strains isolated from Cheongkukjang, Doenjang, and Kochujang samples, respectively, which produced a viscous substance to such extent that it overflowed to the lid of the plate on the glutamate-dependent ${\gamma}$-PGA production plates. On glutamate-independent ${\gamma}$-PGA production plates, 5.1%, 5.9%, and 6.1% of Bacillus-like strains isolated from Cheongkukjang, Doenjang, and Kochujang samples, respectively, showed high production. The maximum ${\gamma}$-PGA production yields were 32.5 g/L and 5 g/L, depending on the purification methods in the glutamate-dependent media, with the higher yield resulting from a simple precipitation of ${\gamma}$-PGA by either methanol or ethanol and dialysis. The viscous substance produced by each strain showed different morphological characteristics, suggesting that isolated ${\gamma}$-PGA producers could produce various types of ${\gamma}$-PGA.

클래드강 맞대기 용접부의 후열처리 유지시간에 따른 델타 페라이트 거동 (δ-Ferrite Behavior of Butt Weld Zone in Clad Steel Plates Depended on Holding Time of PWHT)

  • 박재원;이철구
    • Journal of Welding and Joining
    • /
    • 제32권2호
    • /
    • pp.29-36
    • /
    • 2014
  • Recently, in order to enhance the function and usefulness of products, cladding of dissimilar materials that maximizes the performance of the material is being widely used in all areas of industry as an important process. Clad steel plate, produced by cladding stainless steel plate, an anticorrosive material, on carbon steel plate, is being used to produce pressure vessels. Stainless steel plate has good corrosion resistance, and carbon steel plate has good rigidity and strength; clad steel can satisfy all of these qualities at once. This study aims to find the ${\delta}$-ferrite behavior, mechanical properties, structure change, integrity and reliability of clad steel weld on hot rolled steel plates. For this purpose, multi-layer welding, repair welding and post weld heat treatment were implemented according to welding procedure specifications (WPS). In order to observe the mechanical properties and toughness of clad steel weld zone, post weld heat treatment was carried out according to ASME Sec. VIII Div.1 UW-40 procedure for post weld heat treatment. With heat treatment at $625^{\circ}C$, the hold time was used as the process variable, increased by intervals that were doubled each time, from 80 to 1,280 min. The structure of weld part was typical cast structure; localized primary austenite areas appeared near central vermicular ferrite and fusion line. The heat affected zone showed rough austenite structure created by the weld heat input. Due to annealing effects of heat treatment, the mechanical properties (tensile strength, hardness, impact value) of the heat affected area tended to decrease. From the results of this study, it is possible to conclude the integrity of clad steel welds is not affected much in field welding, repair welding, multi-layer welding, post weld heat treatment, etc.

Microstructural characteristics of a fresh U(Mo) monolithic mini-plate: Focus on the Zr coating deposited by PVD

  • Iltis, Xaviere;Drouan, Doris;Blay, Thierry;Zacharie, Isabelle;Sabathier, Catherine;Onofri, Claire;Steyer, Christian;Schwarz, Christian;Baumeister, Bruno;Allenou, Jerome;Stepnik, Bertrand;Petry, Winfried
    • Nuclear Engineering and Technology
    • /
    • 제53권8호
    • /
    • pp.2629-2639
    • /
    • 2021
  • Within the frame of the EMPIrE test, four monolithic mini-plates were irradiated in the ATR reactor. In two of them, the monolithic U(Mo) foil had been PVD-coated with Zr before the plate manufacturing. Extensive microstructural characterizations were performed on a fresh archive mini-plate, using Optical Microscopy (OM), Scanning Electron Microscopy (SEM) combined with Energy Dispersive Spectroscopy (EDS), Electron Backscattered Diffraction (EBSD) and Focused Ion Beam (FIB)/Transmission Electron Microscopy (TEM) with nano EDS. A particular attention was paid to the examination of the U(Mo) foil, the PVD coating, the cladding/Zr and Zr/U(Mo) interfaces. The Zr coating has a thickness around 15 ㎛. It has a columnar microstructure and appears dense. The cohesion of the cladding/Zr and Zr/U(Mo) interfaces seems to be satisfactory. An almost continuous layer with a thickness of the order of 100-300 nm is present at the cladding/Zr interface and corresponds to an oxidized part of the Zr coating. At the Zr/U(Mo) interface, a thin discontinuous layer is observed. It could correspond to locally oxidized U(Mo). This work provides a basis for interpreting the results of characterizations on EMPIrE irradiated plates.

Morphology of Bone-like Apatite Formation on Sr and Si-doped Hydroxyapatite Surface of Ti-6Al-4V Alloy after Plasma Electrolytic Oxidation

  • Yu, Ji-Min;Choe, Han-Cheol
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2017년도 춘계학술대회 논문집
    • /
    • pp.79-79
    • /
    • 2017
  • Metallic biomaterials have been mainly used for the fabrication of medical devices for the replacement of hard tissue such as artificial hip joints, bone plates, and dental implants. Because they are very reliable on the viewpoint of mechanical performance. This trend is expected to continue. Especially, Ti and Ti alloys are bioinert. So, they do not chemically bond to the bone, whereas they physically bond with bone tissue. For their poor surface biocompatibility, the surface of Ti alloys has to be modified to improve the surface osteoinductivity. Recently, ceramic-like coatings on titanium, produced by plasma electrolytic oxidation (PEO), have been developed with calciumand phosphorus-enriched surfaces. A lso included the influences of coatings, which can accelerate healing and cell integration, as well as improve tribological properties. However, the adhesions of these coatings to the Ti surface need to be improved for clinical use. Particularly Silicon (Si) has been found to be essential for normal bone, cartilage growth and development. This hydroxyapatite, modified with the inclusion of small concentrations of silicon has been demonstrating to improve the osteoblast proliferation and the bone extracellular matrix production. Strontium-containing hydroxyapatite (Sr-HA) was designed as a filling material to improve the biocompatibility of bone cement. In vitro, the presence of strontium in the coating enhances osteoblast activity and differentiation, whereas it inhibits osteoclast production and proliferation. The objective of this work was to study Morphology of bone-like apatite formation on Sr and Si-doped hydroxyapatite surface of Ti-6Al-4V alloy after plasma electrolytic oxidation. Anodized alloys was prepared at 270V~300V voltages with various concentrations of Si and Sr ions. Bone-like apatite formation was carried out in SBF solution. The morphology of PEO, phase and composition of oxide surface of Ti-6Al-4V alloys were examined by FE-SEM, EDS, and XRD.

  • PDF

EF-TEM 직접가열 실험을 통한 titanium의 고온 상전이 연구 (A Study of Titanium Phase Transition through In-situ EF-TEM Heating Experiments)

  • 김진규;이영부;김윤중
    • Applied Microscopy
    • /
    • 제33권1호
    • /
    • pp.49-58
    • /
    • 2003
  • EF-TEM 직접가열 실험을 통하여 titanium의 ${\alpha}-{\beta}$상전이를 연구하였다. 통계적 오차를 줄이기 위해 서로 다른 3군데의 titanium foil의 영역을 관찰하였고, 각각의 영역에 대해 단계별로($RT{\rightarrow}600{\rightarrow}900{\rightarrow}RT$) 회절패턴과 이미지를 기록하였다. 이 연구를 통해 얻은 결과는 다음과 같다. (1) Titanium은 $900^{\circ}C$에서 급격히 상전이가 진행된다. 이 온도에서는 ${\alpha}$${\beta}$-상이 같이 존재한다. (2) 상전이가 일어난 ${\beta}$-상의 영역은 쌍정구조를 가진 plate 형태로 나타나며, 그들은 서로 상호 회전 배열되어 있다. (3) 전자회절도형과 EDS 분석 결과, $600^{\circ}C$ 이상의 가열에서는 열적 산화에 의해 Ti의 산화물이 표면에서 생성되기 시작하며 이들은 냉각 시 Ti의 ${\beta}{\rightarrow}{\alpha}$ 가역 상전이를 저해한다.

고분자전해질 연료전지에서 TiN과 Ti/TiN이 코팅된 스텐레스 강 분리판의 부식 특성 (Analysis of Corrosion Characteristics for TiN- and Ti/TiN-coated Stainless Steel Bipolar Plate in PEMFC)

  • 한춘수;채길병;이창래;최대규;심중표
    • Korean Chemical Engineering Research
    • /
    • 제50권1호
    • /
    • pp.118-127
    • /
    • 2012
  • 고분자전해질 연료전지용 분리판 소재로 스텐레스 강의 내식성과 전기전도성을 향상시키기 위해 표면을 TiN(titanium nitride) 또는 Ti/TiN(titanium/titanium nitride)으로 코팅하여 연료전지 운전환경에서 표면 코팅층의 물성 변화를 조사하였다. 200시간의 연료전지 운전에서 표면 코팅층의 부식, 균열(crack), 박리, 표면 화학조성 변화 등을 분석하여 코팅된 TiN 또는 Ti/TiN 박막의 역할을 규명하고자 하였다. 스텐레스 강 분리판의 전기전도도와 부식저항성은 소재 표면에 질화층 박막을 코팅함으로써 증가하였으나 연료전지 환경하에서 운전시 코팅된 박막의 부식과 박리현상이 SUS316L-Ti/TiN을 제외하고 현저히 발생하였다. TiN 코팅층과 하부 기재 사이에 Ti 중간층을 도입함으로써 TiN 박막의 밀착성이 향상되고 또한 코팅층의 두께 증가로 부식 위험성이 감소하는 것을 관찰하였다.

안정된 스텐트 코팅막을 형성하기 위해 금속표면과 고분자 사이의 화학적 결합을 이용한 고분자 코팅법 개발 (Development of Polymer Coating Method for Stable Stent Coating Using Chemical Bond Between Metal Surface and Polymer)

  • 남대식;이우경
    • Journal of Pharmaceutical Investigation
    • /
    • 제37권1호
    • /
    • pp.7-13
    • /
    • 2007
  • To produce stable polymer coating layer using the interaction between metal stent and polymer layer, Ahx-HSAB was synthesized by coupling 6-aminoheanoic acid (Ahx) with N-Hydroxy succinimidyl 4-azidobenzonate (HSAB) containing photo reactive group. Then, Ahx-HSAB was applied to self·assembled monolayer (SAM) on $TiO_2$-coated surface, since one end of Ahx-HSAB was carboxyl acid which was known to be able to interact with $TiO_2$ surface. That SAM layer was incubated in 1% polycaprolacton (PCL) solution and photoreacted by ultraviolet light (254 nm) to produce the chemical bond between SAM and polymer layer, followed by PCL polymer coating ({\sim}5\;{\mu}m$) by the method of spray coating. The surface change was investigated by measuring of contact angle of the surface. The contact angle values of stainless steel (SS) surface, $TiO_2$-coated surface, SAM layer by Ahx-HSAB, photoreacted surface with PCL and PCL layer by spray coating were 70.48${\pm}$1.89, 38.57${\pm}$3.31, 60.14${\pm}$2.21, 54.91${\pm}$2.70 and 56.47${\pm}$2.12, respectively. The stability of polymer layers was tested by incubation of PCL-coated plates in 0.1M PBS buffer (pH 7.4, 0.05%, Tween 80) with vigorous shaking (200 rpm). While the poiymer layer prepared by these processes showed the intact surface morphology over 3 days, the polymer layers prepared by spray coating of PCL onto SS plate (control 1) and $TiO_2$-coated SS plate (control 2) were Peeled off in 3 days. Thus, the polymer coating method using SAM and photoreaction seems to be a effective method to obtain the stable polymer layer onto SS surface.

고분자전해질 연료전지용 전극물질의 빠른 스크리닝을 위한 멀티셀 테스트 시스템에서 개별셀의 성능편차에 대한 분석 (Analysis for Performance Deviation of Individual Cells in a Multi-Cell Test System for Rapid-Screening of Electrode Materials in PEMFCs)

  • 장언;이지정;박경세;이홍기;심중표
    • 한국수소및신에너지학회논문집
    • /
    • 제22권6호
    • /
    • pp.842-851
    • /
    • 2011
  • A multi-cell test system with 25 independent cells is used to test different electrode materials simultaneously for polymer electrolyte membrane fuel cells (PEMFCs). Twenty-five segmented membrane electrode assemblies (MEAs) having the same or different Pt-loading are prepared to analyze the performance deviation of cells in the multi-cell test system. Improvements in the multi-cell test system are made by ensuring that the system performs voltage sensing for the cells individually and inserting optimum gaskets between the MEAs and the graphite plates. The cell performances are improved and their deviations are significantly decreased by these modifications. The performance deviations changed according to various cell configurations because the operating conditions of the cells, such as the gas flow and concentration, differed. This cell system can be used to test multiple electrodes simultaneously because it shows relatively uniform performance under the same conditions as well as linear correlation with various catalyst loadings.