• 제목/요약/키워드: nano-particle drug delivery

검색결과 27건 처리시간 0.023초

Combined nano-particle drug delivery and physiotherapy in treatment of common injuries in dance-sport

  • Weixin Dong;Gang Lu;Yangling Jiang;Fan Zhou;Xia Liu;Chunxia Lu
    • Advances in nano research
    • /
    • 제15권3호
    • /
    • pp.225-237
    • /
    • 2023
  • Combination of novel technologies with traditional physiotherapy in rehabilitation in injured athletes have shown to provide improved time of recovery. In specific, nanodrugs delivery systems are widely utilized as a counterpart to the physiotherapy in injuries in sports. In the present study, we focus on the common injuries in dance-sports, their recovery and the effect combination of nano-particle drug delivery with the physiotherapy practices. In this regard, a comprehensive review on the common injuries in dance sport is provided. Moreover, the researches on the effectiveness of the nano-particle drug delivery in therapy of such injuries and in similar cases are provided. The possibility of using combination of nano-particle drug delivery and physiotherapy is discussed in detail. Finally, using artificial intelligence methods, predictions on the recovery time and after-treatment side-effects is investigated. Artificial Neural Network (ANN) predictions suggested that using nano-particle drug delivery systems along with physiotherapy practices could provide shortened treatment time to recovery in comparison to conventional drugs. Moreover, the post-recover effects are less than the conventional methods.

멀티 리간드의 특이적 상호작용이 입자-세포간 상호작용에 미치는 영향 (Effect of Specific Interaction of Multi-Ligands on the Specific Interaction between Particle and Cell)

  • 윤정현;이세영
    • 대한의용생체공학회:의공학회지
    • /
    • 제43권2호
    • /
    • pp.94-101
    • /
    • 2022
  • Recent advancement of micro/nano technology enables the development of diverse micro/nano particle-based delivery systems. Due to the multi-functionality and engineerability, particle-based delivery system are expected to be a promising method for delivery to the target cell. Since the particle-based delivery system should be delivered to the various kinds of target cell, including the cardiovascular system, cancer cell etc., it is frequently decorated with multiple kinds of targeting molecule(s) to induce specific interaction to the target cell. The surface decorated molecules interact with the cell surface expressed molecule(s) to specifically form a firm adhesion. Thus, in this study, the probability of adhesion is estimated to predict the possibility to form a firm adhesion for the multi-ligand decorated particle-based delivery system.

Nano-sized Drug Carriers and Key Factors for Lymphatic Delivery

  • Choi, Ji-Hoon;Lee, Yong-Bok
    • Journal of Pharmaceutical Investigation
    • /
    • 제40권spc호
    • /
    • pp.75-82
    • /
    • 2010
  • Specific diseases like cancer and acquired immune deficiency syndrome (AIDS) occur at various organs including lymphatics and spread through lymphatic system. Thus, if therapeutic agents for such diseases are more distributed or targeted to lymphatic system, we can obtain several advantages like reduction of systemic side effect and increase of efficacy. For these reasons, much interest has been focused on the nature of lymphatics and a lot of studies for lymphatic delivery of drugs have been carried out. Because lymphatics consist of single layer endothelium and have high permeability compared with blood capillaries, especially, the studies using nano-sized carriers have been performed. Polymeric nano-particle, liposome, and lipid-based vehicle have been adopted for lymphatic delivery as carriers. According to the administration route and the kind of carrier, the extent of lymphatic delivery efficiency of nano-sized carriers has been changed and influenced by several factors such as size, charge, hydrophobicity and surface feature of carrier. In this review, we summarized the key factors which affect lymphatic uptake and the major features of carriers for achieving the lymphatic delivery. Lymphatic delivery of drug using nano-sized carriers has many fold improved ability of lymphatic delivery compared with that of conventional dosage forms, but it has not shown whole lymph selectivity yet. Even though nano-sized carriers still have the potential and worth to study as lymphatic drug delivery technology as before, full understanding of delivery mechanism and influencing factors, and setting of pharmacokinetic model are required for more ideal lymphatic delivery of drug.

나노입자수송시스템을 이용한 파클리탁셀 정맥주사제의 제조 및 평가 (Preparation and Evaluation of Paclitaxel Nano-particle Delivery System for Parenteral Formulations)

  • 전일순;김정수;이계원;지웅길
    • 약학회지
    • /
    • 제49권4호
    • /
    • pp.268-274
    • /
    • 2005
  • Paclitaxel is an effective antineoplastic agent against ovarian, colon and breast tumors. But there have been many difficulties to formulate this drug due to the extremely low aqueous solubility. Paclitaxel is currently formulated in a vehicle composed of Cremophor EL and absolute ethanol mixture which is $5\~20$ fold diluted in normal saline or $5\%$ dextrose solution before I.V. injection. However, this formulation has many problems such as allergic reactions and drug precipitation on aqueous dilution. To overcome these problems, we prepared the micelle and microemulsion systems for parenteral administration of paclitaxel by using glycofurol, $Soluto^{(R)}lHS$ 15 and oleic acid. Phase diagram, pH-rate stability, particle size distributions and pharmacokinetics of the systems were studied. Micelles and microemulsions formulated as nano-particle delivery system were physically and chemically stable. Therefore, these formulations might be the promising alternative candidate for the parenteral delivery of paclitaxel.

용액분산촉진 초임계 공정을 이용한 라이소자임 나노 입자의 제조 및 그 특성 (Preparation and Characterization of Lysozyme Nanoparticles using Solution Enhanced Dispersion by Supercritical Fluid (SEDS) Process)

  • 김동현;박희준;강선호;전승욱;김민수;이시범;박정숙;황성주
    • Journal of Pharmaceutical Investigation
    • /
    • 제35권2호
    • /
    • pp.89-94
    • /
    • 2005
  • The micron or nano-sized lysozyme as a model protein drug was prepared using solution enhanced dispersion by supercritical fluid (SEDS) process at various conditions (e.g., solvent, temperature and pressure) to investigate the feasibility of pulmonary protein drug delivery. The lysozyme particles prepared were characterized by laser diffraction particle size analyzer, scanning electron microscopy (SEM) and powder X-ray diffractometry (PXRD). The biological activity of lysozyme particles after/before SEDS process was also examined. Lysozyme was precipitated as spherical particles. The precipitated particles consisted of 100 - 200 nm particles. Particle size showed the precipitates to be agglomerates with primary particles of size $1\;-\;5 \;{\mu}m$. The biological activity varied between 38 and 98% depending on the experimental conditions. There was no significant difference between untreated lysozyme and lysozyme after SEDS process in PXRD analysis. Therefore, the SEDS process could be a novel method to prepare micron or nano-sized lysozyme particles, with minimal loss of biological activity, for the pulmonary delivery of protein drug.

Efficacy of nano-drugs in muscle injury rehabilitation and fatigue relief

  • Zicheng Wang;Yanqing Liu;Haibo Wang;Dai Liu;Niuniu Yang;Mengying Lv
    • Advances in nano research
    • /
    • 제14권1호
    • /
    • pp.17-25
    • /
    • 2023
  • Gold nanoparticles have recognized a promising drug carriers in many diseases. These nanoparticles could carry anti-inflammatory drugs in the case of muscle injury and for fatigue relief. On the other hand, specific surface of this kind of nanoparticles could be critical in amount of drug they could carry. Therefore, in this study, we explore different methodology and influencing parameters on the specific surface of gold nanoparticles. After specifying the main parameters, different machine learning and artificial neural network are adopted to model the effects of different parameters. Furthermore, response surface methodology is utilized to obtain a quadrilateral relationship between different parameters and specific surface. The results indicate that concentration of the gold salt solution is the most important parameter in increasing the size of gold nanoparticle and, as a consequence, increasing specific surface. Moreover, the ability of gold nanoparticles in prolonging retention of the drugs is discussed in detail.

Folate-Targeted Nanostructured Lipid Carriers (NLCs) Enhance (Letrozol) Efficacy in MCF-7 Breast Cancer Cells

  • Sabzichi, Mehdi;Mohammadian, Jamal;Khosroushahi, Ahmad Yari;Bazzaz, Roya;Hamishehkar, Hamed
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권12호
    • /
    • pp.5185-5188
    • /
    • 2016
  • Objective: Targeted-drug-delivery based lipid nanoparticles has emerged as a new and effective approach in cancer chemotherapy. Here, we investigated the ability of folate-modified nanostructured lipid carriers (NLCs) to enhance letrozol (LTZ) efficacy in MCF-7 breast cancer cells. Methods: New formulations were evaluated regarding to particle size and scanning electron microscope (SEM) features. Anti-proliferative effects of LTZ loaded nanoparticles were examined by MTT assay. To understand molecular mechanisms of apoptosis and cell cycle progression, flow cytometric assays were applied. Results: Optimum size of nanoparticles was obtained in mean average of $98{\pm}7nm$ with a poly dispersity index (PDI) of 0.165. The IC50 value was achieved for LTZ was $2.2{\pm}0.2{\mu}M$. Folate-NLC-LTZ increased the percentage of apoptotic cells from 24.6% to 42.2% compared LTZ alone (p<0.05). Furthermore, LTZ loaded folate targeted NLCs caused marked accumulation of cells in the subG1 phase. Conclusion: Taken together, our results concluded that folate targeted LTZ can be considered as potential delivery system which may overcome limitations of clinical application of LTZ and improve drug efficacy in tumor tissue.

바이오틴 함유 나노리포좀의 안정성에 관한 연구 (Study on the Stability of Biotin-containing Nano-liposome)

  • 양성준;김태양;이춘몽;이광식;윤경섭
    • 대한화장품학회지
    • /
    • 제46권2호
    • /
    • pp.133-145
    • /
    • 2020
  • 본 연구는 용해도가 낮은 수용성 활성물질인 바이오틴(biotin)의 안정화 및 용해도 증가를 목적으로 나노리포좀을 활용하였다. 이번 실험을 통해 바이오틴 나노리포좀의 안정성에 pH가 큰 영향을 준다는 사실을 확인할 수 있었으며, pH 상승이 바이오틴 활성에 튼 영향을 미치지 않음을 확인하였다. 또한 제타사이저(zetasizer)로 입자크기, 제타전위(zeta potential) 및 다분산지수(polydispersity index)를 측정하여 안정성을 평가하였다. 입자크기는 평균 100 ~ 250 nm, 제타전위 -80 ~ -30 mV로 나노리포좀 제조가 가능함을 확인하였다. 바이오틴 나노리포좀 내의 바이오틴 캡슐화율(capsulation efficiency)을 측정하기 위해 dialysis membrane method (DMM)를 이용하여 평가하였으며, 이를 통해 알지닌을 첨가시킨 바이오틴 나노리포좀이 일반 바이오틴 나노리포좀보다 캡슐화율이 5 배 높은 것으로 측정되었다. 바이오틴 나노리포좀의 경피흡수율을 측정하기 위해 in vitro franz diffusion cell method를 통해 확인하였으며, cryogenic transmission electron microscopy (cryo - TEM)을 통해 바이오틴 나노리포좀이 잘 형성되었는지 확인하였다. 본 논문을 통하여 모발건강과 밀접한 관계가 있는 것으로 소개된 바이오틴을 약물전달체(drug delivery carrier)인 나노리포좀에 캡슐화시켜 기존의 낮은 용해도 및 석출되는 문제를 보완한 바이오틴 나노리포좀을 만들 수 있음을 확인하였다.

세포독성 평가를 통한 γ-Fe2O3 나노입자의 생체안정성 및 약물전달효율 (Biostability and Drug Delivery Efficiency of γ-Fe2O3 Nano-particles by Cytotoxicity Evaluation)

  • 이권재;안정희;신재수;김동희;유화승;조종관
    • 한국재료학회지
    • /
    • 제20권3호
    • /
    • pp.132-136
    • /
    • 2010
  • This study examined the biostability and drug delivery efficiency of g-$Fe_2O_3$ magnetic nanoparticles (GMNs) by cytotoxicity tests using various tumor cell lines and normal cell lines. The GMNs, approximately 20 nm in diameter, were prepared using a chemical coprecipitation technique, and coated with two surfactants to obtain a water-based product. The particle size of the GMNs loaded on hangamdan drugs (HGMNs) measured 20-50 nm in diameter. The characteristics of the particles were examined by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-TEM) and Raman spectrometer. The Raman spectrum of the GMNs showed three broad bands at 274, 612 and $771\;cm^1$. A 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay showed that the GMNs were non-toxic against human brain cancer cells (SH-SY5Y, T98), human cervical cancer cells (Hela, Siha), human liver cancer cells (HepG2), breast cancer cells (MCF-7), colon cancer cells (CaCO2), human neural stem cells (F3), adult mencenchymal stem cells (B10), human kidney stem cells (HEK293 cell), human prostate cancer (Du 145, PC3) and normal human fibroblasts (HS 68) tested. However, HGMNs were cytotoxic at 69.99% against the DU145 prostate cancer cell, and at 34.37% in the Hela cell. These results indicate that the GMNs were biostable and the HGMNs served as effective drug delivery vehicles.

Physiochemical Properties of Binary Pluronic Systems for Reversal of Multi-drug Resistant (MDR) Cancers

  • Yun, Jung-Min;Park, Ga-Young;Kim, Ha-Hyung;Lee, Jae-Hwi;Lee, Eun-Seong;Youn, Yu-Seok;Lee, Beom-Jin;Oh, Young-Taik;Oh, Kyung-Taek
    • Journal of Pharmaceutical Investigation
    • /
    • 제40권4호
    • /
    • pp.255-261
    • /
    • 2010
  • Pluronic as pharmaceutical excipients are listed in the US and British Pharmacopoeia. In particular, Pluronics exist as different compositions and display abundant phases as self-assembling into polymeric micelles with various morphologies depending on the aqueous solvent quality, the composition of structure, and hydrophilic-lipophilic balance (HLB). Pluronics were also known as a P-gp modulator, which was exploited as a reversal molecule of multi-drug resistant (MDR) cancers. We selected a lamella forming Pluronic L92 which has high hydrophobicity and relatively long PEO block among L series of Pluronics. The dispersion of L92 showed great size particles and low stability. To increase the stability and to decrease the particle size, secondary Pluronics (F68, F88, F98, F127, P85, P105, and P123) with relatively long PEO chain were added into 0.1 wt% Pluronic L92 dispersion. The stability of binary systems was increased due to incorporated long PEO chain. Their particle sizes slightly decreased to over 200~400 nm and their solubilization capacity of binary systems didn't change except Pluronic L92/P123 mixtures. The L92/P123 systems showed ca. 100 nm sizes and lowest turbidity among the all systems. The solubilization capacity of 0.1 wt% L92/0.1 wt% P123 was slightly increased compared to 0.1 wt% L92 mono system and other binary systems. These nano-sized binary systems may have potential as alternative drug delivery systems with simple preparation method and overcome the drawbacks of mono systems such as low stability and loading capacity.