• 제목/요약/키워드: nano-modified surface

검색결과 235건 처리시간 0.026초

Desalting enhancement for blend polyethersulfone/polyacrylonitrile membranes using nano-zeolite A

  • Mansor, Eman S.;Jamil, Tarek S.;Abdallah, Heba;Youssef, H.F.;Shaban, Ahmed M.;Souaya, Eglal R.
    • Membrane and Water Treatment
    • /
    • 제10권6호
    • /
    • pp.451-460
    • /
    • 2019
  • Thin film composite membranes incorporated with nano-sized hydrophilic zeolite -A were successfully prepared via interfacial polymerization (IP) on porous blend PES/PAN support for water desalination. The thin film nanocomposite membranes were characterized by SEM, contact angle and performance test with 7000 ppm NaCl solution at 7bar. The results showed that the optimum zeolite loading amount was determined to be 0.1wt% with permeate flux 29LMH.NaCl rejection was improved from 69% to 92% compared to the pristine polyamide membrane where the modified PA surface was more selective than that of the pristine PA. In addition, there was no significant change in the permeate flux of the thin film nanocomposite membrane compared with that of the pristine PA in spite of the formation of the dense polyamide layer. The stability of the polyamide layer was investigated for 15 days and the optimized membrane presented the highest durability and stability.

Polarity Index Dependence of M13 Bacteriophage-based Nanostructure for Structural Color-based Sensing

  • Lee, Yujin;Moon, Jong-Sik;Kim, Kyujung;Oh, Jin-Woo
    • Current Optics and Photonics
    • /
    • 제1권1호
    • /
    • pp.12-16
    • /
    • 2017
  • Color sensor systems based on M13 bacteriophage are being considerably researched. Although many studies on M13 bacteriophage-based chemical sensing of TNT, endocrine disrupting chemicals, and antibiotics have been undertaken, the fundamental physical and chemical properties of M13 bacteriophage-based nanostructures require further research. A simple M13 bacteriophage-based colorimetric sensor was fabricated by a simple pulling technique, and M13 bacteriophage was genetically engineered using a phage display technique to exhibit a negatively charged surface. Arrays of structurally and genetically modified M13 bacteriophage that can determine the polarity indexes of various alcohols were found. In this research, an M13 bacteriophage-based color sensor was used to detect various types of alcohols, including methanol, ethanol, and methanol/butanol mixtures, in order to investigate the polarity-related property of the sensor. Studies of the fundamental chemical sensing properties of M13 bacteriophage-based nanostructures should result in wider applications of M13 bacteriophage-based colorimetric sensors.

기능성 항균 나노입자를 이용한 친환경성 특수지 제조에 관한 연구(I) (Study on Preparation of Environment-Friendly Special Paper Using Functional Antibiotic Nano-Particle (I))

  • 조준형;이용원;김형진;이종만
    • 공업화학
    • /
    • 제16권3호
    • /
    • pp.385-390
    • /
    • 2005
  • 본 연구에서는 seed sol 부가법을 통해 나노 사이즈의 콜로이달 Ag를 제조하였다. 제조된 콜로이달 Ag 용액은 hybridizer system과 spray nozzle을 통하여 제지용 무기안료 표면에 분사한 후 이산화티탄으로 표면개질하여 기능성 항균 복합 분체를 제조하였다. 나노 사이즈의 콜로이달 Ag 제조에 있어 $AgNO_3$의 첨가와 시간의 경과에 따라 흡수도가 커지는 것으로 단위 중량당 입자의 크기가 커짐을 확인할 수 있었다. 제조된 기능성 무기안료의 항균성 측정은 균들의 해당 균주에서 시간이 증가함에 따라 균의 성장이 억제되는 결과를 나타내었고 항균접종 실험 실시 후 5~7 h 안에 항균성이 발현되면서 일정한 시간 범위 내에서의 항균력이 우수한 것으로 측정되었다. 또한 $TiO_2$의 광촉매 효과 측정 결과 benzene의 광분해 효율실험에서 반응시간 80 min 동안 60~70% 정도의 효율을 보였고, 반응시간 30 min 정도에서 이미 달성한 분해효율이 90% 이상에 도달해 있음을 알 수 있었다.

Ion-Imprinted Polymers Modified Sensor for Electrochemical Detection of Cu2+

  • An, Zhuolin;Liu, Weifeng;Liang, Qi;Yan, Guang;Qin, Lei;Chen, Lin;Wang, Meiling;Yang, Yongzhen;Liu, Xuguang
    • Nano
    • /
    • 제13권12호
    • /
    • pp.1850140.1-1850140.9
    • /
    • 2018
  • An electrochemical sensor ($Cu^{2+}$-IIPs/GCE) was developed for detection of $Cu^{2+}$ in water. $Cu^{2+}$-IIPs/GCE was prepared by dispersing $Cu^{2+}$ imprinted polymers ($Cu^{2+}$-IIPs) on a preprocessed glassy carbon electrode. $Cu^{2+}$-IIPs were synthesized on the surface of modified carbon spheres by ion imprinting technology. The electrochemical performance of $Cu^{2+}$-IIPs/GCE was evaluated by differential pulse voltammetry method. The response of $Cu^{2+}$-IIPs/GCE to $Cu^{2+}$ was linear in $1.0{\times}10^{-5}mol/L$ to $1.0{\times}10^{-3}mol/L$. The detection limit was $5.99{\times}10^{-6}mol/L$ (S=N = 3). The current response value of $Cu^{2+}$-IIPs/GCE was 2.14 times that of the nonimprinted electrode. These results suggest that $Cu^{2+}$-IIPs/GCE can detect the concentration of $Cu^{2+}$ in water, providing a new way for heavy metal ions adsorption and testing.

Surface modified rice husk ceramic particles as a functional additive: Improving the tribological behaviour of aluminium matrix composites

  • Cheng, Lehua;Yu, Dongrui;Hu, Enzhu;Tang, Yuchao;Hu, Kunhong;Dearn, Karl David;Hu, Xianguo;Wang, Min
    • Carbon letters
    • /
    • 제26권
    • /
    • pp.51-60
    • /
    • 2018
  • An electroless deposition method was used to modify the surface properties of rice husk ceramic particles (RHC) by depositing nano-nickel on the surface of the RHC (Ni-RHC). The dry tribological performances of aluminum matrix composite adobes containing different contents of RHC and Ni-RHC particles have been investigated using a micro-tribometer. Results showed that the Ni-RHC particles substantially improved both the friction and wear properties of the Ni-RHC/aluminum matrix adobes. The optimal concentration was determined to be 15 wt% for both the RHC and Ni-RHC particles. The improvements in the tribological properties of aluminum adobes including the Ni-RHC were ascribed to friction-induced peeling off of Ni coating and formation of protection layer on the wear zone, both of which led to low friction and wear volume.

Fabrication of Pre-Exfoliated Clay Masterbatch via Exfoliation-Adsorption of Polystyrene Nanobeads

  • Khvan, Svetlana;Kim, Jun-Kyung;Lee, Sang-Soo
    • Macromolecular Research
    • /
    • 제15권1호
    • /
    • pp.51-58
    • /
    • 2007
  • The approach studied in the present work produced an exfoliated state of clay layers via confinement of the charged nano-sized polystyrene (PS) beads within the gallery of swollen pristine clay. It was demonstrated that adsorption of the polymer nanobeads dramatically promotes expansion of the clay gallery. A comparative study of incorporation was conducted by employing organo-modified clay along with two different colloid polymer systems: electrostatically stabilized PS nanobeads and cationic monomer-grafted PS nanobeads. The mechanism of adsorption of the monomer-grafted polymer beads onto clay via cationic exchange between the alkyl ammonium group of the polymer nanobeads and the interlayer sodium cation of the layered silicate was verified by using several techniques. As distinct from the polymer nanobeads formed using conventional miniemulsion polymerization method, competitive adsorption of stabilizing surfactant molecules was be prevented by grafting the surface functional groups into the polymer chain, thereby supporting the observed effective adsorption of the polymer beads. The presence of surface functional groups that support the establishment of strong polymer-clay interactions was suggested to improve the compatibility of the clay with the polymer matrix and eventually play a crucial role in the performance of the final nanocomposites.

저유전물질로의 응용을 휘한 규칙성 메조포러스 실리카 박막에의 HMDS 처리 (HMDS Treatment of Ordered Mesoporous Silica Film for Low Dielectric Application)

  • 하태정;최선규;유병곤;박영호
    • 한국세라믹학회지
    • /
    • 제45권1호
    • /
    • pp.48-53
    • /
    • 2008
  • In order to reduce signal delay in ULSI, an intermetal material of low dielectric constant is required. Ordered mesoporous silica film is proper to intermetal dielectric due to its low dielectric constant and superior mechanical properties. The ordered mesoporous silica film prepared by TEOS (tetraethoxysilane) / MTES (methyltriethoxysilane) mixed silica precursor and Brij-76 surfactant was surface-modified by HMDS (hexamethyldisilazane) treatment to reduce its dielectric constant. HMDS can substitute $-Si(CH_3)_3$ groups for -OH groups on the surface of silica wall. In order to modify interior silica wall, HMDS was treated by two different processes except the conventional spin coating. One process is that film is dipped and stirred in HMDS/n-hexane solution, and the other process is that film is exposed to evaporated HMDS. Through the investigation with different HMDS treatment, it was concluded that surface modification in evaporated HMDS was more effective to modify interior silica wall of nano-sized pores.

반응표면법을 활용한 축류형 사이클론 구조 최적화 설계에 관한 연구 (A Study on Optimum Design of an Axial Cylcone structure using Response Surface Method)

  • 조진일;윤준호;조영광;석현호;김태성
    • 한국입자에어로졸학회지
    • /
    • 제17권3호
    • /
    • pp.71-79
    • /
    • 2021
  • Ultrafine dust, which is emitted from industrial factories or all kinds of vehicles, threatens the human's respiratory system and our environment. In this regard, separating airborne particles is essential to mitigate the severe problem. In this work, an axial cyclone for the effective technology of eliminating harmful dust is investigated by numerical simulation using Ansys 2020, Fluent R2. In addition, the optimized structure of the cyclone is constructed by means of multi objective optimization based on the response surface method which is a representative method to analyze the effect of design parameter on response variables. Among several design parameters, the modified length of the vortex finder and dust collector is a main point in promoting the performance of the axial cyclone. As a result, the optimized cyclone exhibits remarkable performance when compared to the original model, resulting in pressure drop of 307 Pa and separator efficiency of 98.5%.

Buckling and vibration of porous sandwich microactuator-microsensor with three-phase carbon nanotubes/fiber/polymer piezoelectric polymeric nanocomposite face sheets

  • Arani, Ali Ghorbanpour;Navi, Borhan Rousta;Mohammadimehr, Mehdi
    • Steel and Composite Structures
    • /
    • 제41권6호
    • /
    • pp.805-820
    • /
    • 2021
  • In this research, the buckling and free vibration of three-phase carbon nanotubes/ fiber/ polymer piezoelectric nanocomposite face sheet sandwich microbeam with microsensor and micro-actuator surrounded in elastic foundation based on modified couple stress theory (MCST) is investigated. Three types of porous materials are considered for sandwich core. Higher order (Reddy) and sinusoidal shear deformation beam theories are employed for the displacement fields. Sinusoidal surface stress effects are extracted for sinusoidal shear deformation beam theory. The equations of motion are derived by Hamilton's principle and then the natural frequency and critical buckling load are obtained by Navier's type solution. The determined results are in good agreement with other literatures. The detailed numerical investigation for various parameters is performed for this microsensor-microactuator. The results reveal that the microsensor-microactuator enhanced by increasing of Skempton coefficient, carbon nanotubes diameter length to thickness ratio, small scale factor, elastic foundation, surface stress constants and reduction in porous coefficient, micro-actuator voltage and CNT weight fraction. The valuable results can be expedient for micro-electro-mechanical (MEMS) and nano-electro-mechanical (NEMS) systems.

졸-겔 공정으로 제조한 나노 실리카의 표면개질 및 가스차단성 필름으로의 응용 (Surface Modification of Nano Silica Prepared by Sol-gel Process and Subsequent Application towards Gas-barrier Films)

  • 장효준;장미정;남광현;정대원
    • 공업화학
    • /
    • 제30권1호
    • /
    • pp.68-73
    • /
    • 2019
  • 실리카 표면의 개질을 위하여 다양한 조건 하에서 tetraethyl orthosilicate (TEOS)로부터 졸-겔 공법으로 제조한 실리카 졸에 실란 커플링제인 octyltrimethoxysilane (OTMS) 또는 hexadecyltrimethoxysilane (HDTMS)을 반응시켰다. 얻어진 반응물들의 SEM-EDS, 열분석 및 원소분석을 통하여 실리카의 표면이 유기물로 개질된 것을 확인할 수 있었다. 유기용매에서의 분산성 및 에폭시 수지와 복합화한 필름의 표면 조도 등을 평가한 결과, 에탄올을 용매로 사용하여 $50^{\circ}C$에서 TEOS를 24 h 가수분해하고, OTMS를 2 h 반응시킨 물질이 최적으로 나타났다. 이와 같은 표면 개질 실리카를 포함하는 복합체 필름의 산소 투과도를 측정한 결과, 개질 실리카를 포함하지 않는 필름에 비하여 산소 투과도가 12% 저하된 것을 확인할 수 있었다.