• Title/Summary/Keyword: nano-kenaf

Search Result 4, Processing Time 0.016 seconds

Nano-Kenaf Cellulose Effects on Improved Mechanical Properties of Polypropylene Composite (나노 케냐프 셀룰로오스가 폴리프로필렌 복합소재의 물성 증가에 미치는 영향)

  • Oh, Jeong Seok;Lee, Seong-Hoon;Bumm, Sughun;Kim, Kwang-Jea
    • Polymer(Korea)
    • /
    • v.37 no.5
    • /
    • pp.613-617
    • /
    • 2013
  • The effects of nano size kenaf cellulose fiber on mechanical property of polypropylene (PP) composite were investigated. The addition of nano-kenaf in place of natural kenaf showed higher tensile strength, flexural strength, impact strength, and heat deflection temperature compared to the natural kenaf filled PP composite, while it shows lower melt flow index, elongation%, and flexural modulus. These seemed to be due to the increased surface area of nano-kenaf fiber contacting PP matrix and reduced impurities such as volatile extractives on the fiber surface.

Effects of Alkali Treated Nano-kenaf Fiber in Polypropylene Composite upon Mechanical Property Changes (알카리로 처리된 나노케냐프 섬유가 PP 복합소재 내에서 기계적 물성 변화에 미치는 영향)

  • Oh, Jeong Seok;Lee, Seong-Hoon;Kim, Kwang-Jea
    • Polymer(Korea)
    • /
    • v.39 no.1
    • /
    • pp.99-106
    • /
    • 2015
  • The surface of nano-kenaf containing cellulose fibers was treated with alkali (NaOH) and their effects on the physical properties of the polypropylene (PP) composite were investigated. The treatment of alkali on the fibers increased the melt flow index (M.I.), elongation%, and impact strength, while it decreased the tensile strength, flexural modulus and heat deflection temperature (HDT) of the compound compared to the untreated one. It seemed the alkali treatment on the nano-kenaf fiber changed the character of the fiber due to removal of impurities and chemicals on the surface and resulted in decreased interfacial adhesion between the nano-fiber surface and the PP matrix and changed the character of the PP.

Dynamic Mechanical Properties of Natural Fiber/Polymer Biocomposites: The Effect of Fiber Treatment with Electron Beam

  • Han, Young-Hee;Han, Seong-Ok;Cho, Dong-Hwan;Kim, Hyung-Il
    • Macromolecular Research
    • /
    • v.16 no.3
    • /
    • pp.253-260
    • /
    • 2008
  • Environmentally friendly biocomposites were made using plant-based natural fibers, such as henequen and kenaf. The natural fiber reinforced polypropylene (PP) and unsaturated polyester (UP) biocomposites were examined in terms of the reinforcing effect of natural fibers on thermoplastic and thermosetting polymers. Kenaf (KE) and henequen (HQ) fibers were treated with an electron beam (EB) of 10 and 200 kGy doses, respectively, or with a 5 wt% NaOH solution. Four types of biocomposites (KE/PP, HQ/PP, KE/UP and HQ/UP) were fabricated by compression molding and each biocomposite was characterized by dynamic mechanical analysis and thermogravimetric analysis. The kenaf fiber had the larger reinforcing effect on the dynamic mechanical properties of both PP and UP biocomposites than the henequen fiber. The highest storage modulus was obtained from the biocomposite with the combination of UP matrix and 200 kGy EB treated kenaf fibers.

Manufacturing and Characterization of Red algae fiber/Polypropylene Biocomposites (홍조류섬유보강 폴리프로필렌 바이오복합재료의 제조 및 특성 분석)

  • Lee, Min-Woo;Seo, Yung-Bum;Han, Seong-Ok
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2008.04a
    • /
    • pp.178-182
    • /
    • 2008
  • The bleached red algae fiber(BRAF) showed very similar crystallinity to the cellulose, furthermore, it has higher thermal decomposition temperature than that of the microcrystalline cellulose(MCC). Polypropylene biocomposites reinforced with BRAF have been fabricated with various BRAF contents by compression molding method and their mechanical and thermomechanical properties have been studied. The mechanical strength as tensile, impact and flexural modulus of BRAF/PP biocomposites were gradually improved with increasing the BRAF content, and thermal property which against the thermal expansion was markdly improved, especially. These results are compared with chopped non-woody fibers as Henequen or Kenaf, BRAF was more effective for fabrication of biocomposites reinforced small-sized fibers. The red algae fiber reinforced biocomposites has the applicability such as electronics, biodegradable products and small-structure composites.

  • PDF