• Title/Summary/Keyword: nano structure

Search Result 1,956, Processing Time 0.033 seconds

Surface Plasmon Resonance Based on ZnO Nano-grating Structure (산화아연을 이용한 나노격자 구조의 표면 플라즈몬 공명)

  • Kim, Doo-Gun;Kim, Seon-Hoon;Ki, Hyun-Chul;Kim, Hwe-Jong;Oh, Geum-Yoon;Choi, Young-Wan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.5
    • /
    • pp.922-926
    • /
    • 2010
  • We have investigated the grating coupled surface plasmon resonance (GC-SPR) sensors using ZnO nano-grating structures to enhance the sensitivity of an SPR sensor. The GC-SPR sensors were analyzed using the finite-difference time-domain method. The optimum resonance angles of 49 degrees are obtained in the 150 nm wide grating structure with a period of 300 nm for the ZnO thickness of 30 nm. Then, the ZnO nano-grating patterns were fabricated by using laser interference lithography. The measured resonance angle of nano-grating patterns was around 49 degrees. Here, an enhanced evanescent field is obtained due to the surface plasmon on the edge of the bandgap when the ZnO grating structures are used to excite the surface palsmon.

Mechanism for Ni/YSZ Nano-composite Anode from Spherical Core-shell Formation

  • An, Yong-Tae;Choe, Byeong-Hyeon;Ji, Mi-Jeong;Gu, Ja-Bin;Hwang, Hae-Jin
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.31.2-31.2
    • /
    • 2011
  • We studied a method of manufacturing an anode to restrict contraction in reducing NiO/YSZ by uniformly mixing. In order to mix Ni and YSZ, a sub-micron Ni core surface was coated at high-speed by a mixture of nano-sized YSZ and a spherical core-shell was subsequently formed. The micron-sized core-shell anode powder was then heat treated at $400{\sim}1,450^{\circ}C$ in an air atmosphere and Ni was extruded and synthesized in nano-size. Subsequently, when the nano-sized mixture of the anode was heat treated and maintained at a temperature of $1,450^{\circ}C$, the anode was manufactured, where Ni and YSZ were uniformly distributed with the nano-structure. According to the nano-sized anode powder synthesis process, Ni particles were oxidized at $400{\sim}500^{\circ}C$ and became spherical by surface tension. In the case of the spherical core Ni powder, the heat treatment temperature rose to $1,250^{\circ}C$ and then a gap between the internal and external pressures occurred due to thermal and tensile stresses. A crack subsequently appeared on the surface, and the heat treatment temperature was increased continuously to increase the pressure gap and then the core Ni extruded as a nano-sized powder, Ni and YSZ uniformly distributed. It was found that the anode of 50~200 nm with a consistent structure obtained in this study has electric conductivity that is approximately 3 times larger than that of a commercial anode.

  • PDF

Molecular Effect of PVP on The Release Property of Carvedilol Solid Dispersion

  • Oh, Myeong-Jun;Shim, Jung-Bo;Lee, Eun-Yong;Yoo, Han-Na;Cho, Won-Hyung;Lim, Dong-Kyun;Lee, Dong-Won;Khang, Gil-Son
    • Journal of Pharmaceutical Investigation
    • /
    • v.41 no.3
    • /
    • pp.179-184
    • /
    • 2011
  • This study aimed to confirm the effect of molecular weight (MW) in solid dispersion of carvedilol with poly-vinylpyrrolidone (PVP) of various MW. Solid dispersion of carvedilol with PVP was prepared by spray-drying method. Scanning electron microscopy (SEM) was used to analyze the surface of solid dispersion samples. Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) were used to analyze the crystalline of solid dispersion. Fourier transform infrared spectroscopy (FT-IR) was used to analyze the change of chemical structure characteristic of solid dispersion. DSC and XRD show that drug crystalline was changed. FT-IR revealed that chemical structure of solid dispersion comparing the chemical structure of drug was changed. The dissolution studies of solid dispersion presented at simulated gastric juice (pH 1.2). The dissolution rate of solid dispersion was dramatically enhanced than pure drug and the MW of PVP has an effect on the release property of carvedilol in solid dispersion. In conclusion, the present study has confirmed the effect of MW of PVP on release property of solid dispersion formulation of carvedilol with PVP.

Fabrication of 2D Bravais Nano Pattern and Growth of ZnO Nano Rods with Photonic Crystal Effect (2차원 Bravais Lattice를 가지는 나노 패턴 제조 및 광결정 효과를 가지는 ZnO 나노 기둥 성장)

  • Kim, Tae-Un;Moon, Jong-Ha;Kim, Seon-Hoon;Kim, Doo-Gun;Kim, Jin-Hyeok
    • Korean Journal of Materials Research
    • /
    • v.21 no.12
    • /
    • pp.697-702
    • /
    • 2011
  • Two-dimensional (2D) nano patterns including a two-dimensional Bravais lattice were fabricated by laser interference lithography using a two step exposure process. After the first exposure, the substrate itself was rotated by a certain angle, $90^{\circ}$ for a square or rectangular lattice, $75^{\circ}$ for an oblique lattice, and $60^{\circ}$ for a hexagonal lattice, and the $90^{\circ}$ and laser incident angle changed for rectangular and the $45^{\circ}$ and laser incident angle changed for a centered rectangular; we then carried out a second exposure process to form 2D bravais lattices. The band structure of five different 2D nano patterns was simulated by a beam propagation program. The presence of the band-gap effect was shown in an oblique and hexagonal structure. The oblique latticed ZnO nano-photonic crystal array had a pseudo-bandgap at a frequency of 0.337-0.375, 0.575-0.596 and 0.858-0.870. The hexagonal latticed ZnO nano-crystallite array had a pseudo-bandgap at a frequency of 0.335-0.384 and 0.585-0.645. The ZnO nano structure with an oblique and hexagonal structure was grown through the patterned opening window area by a hydrothermal method. The morphology of 2D nano patterns and ZnO nano structures were investigated by atomic force microscopy and scanning electron microscopy. The diameter of the opening window was approximately 250 nm. The height and width of ZnO nano-photonic crystals were 380 nm and 250 nm, respectively.

Electrodeposition and characterization of Ni-W-Si3N4 alloy composite coatings

  • Choi, Jinhyuk;Gyawali, Gobinda;Lee, Soo Wohn
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.05a
    • /
    • pp.171-172
    • /
    • 2015
  • $Ni-W-Si_3N_4$ alloy composite coatings were prepared by pulse electro-deposition method using nickel sulfate bath with different contents of tungsten source, $Na_2WO_4.2H_2O$, and dispersed $Si_3N_4$ nano-particles. The structure and micro-structure of coatings was separately analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM). Results indicated that nano $Si_3N_4$ and W content in alloy had remarkable effect on micro-structure, micro-hardness and scratch resistant properties. Tungsten content in Ni-W and $Ni-W-Si_3N_4$ alloy ranged from 7 to 14 at.%. Scratch test results suggest that as compared to Ni-W only, $Ni-W-Si_3N_4$ prepared from Ni/W molar ratio of 1:1.5 dispersed with 20 g/L $Si_3N_4$ has shown the best result among different samples.

  • PDF