• Title/Summary/Keyword: nano structure

Search Result 1,965, Processing Time 0.035 seconds

A Study of the Dielectric Characteristics of the Low-k SiOCH Thin Films by Ellipsometry (Ellipsometry를 이용한 Low-k SiOCH 박막의 유전특성에 관한 연구)

  • Yi, In-Hwan;Hwang, Chang-Su;Kim, Hong-Bae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.12
    • /
    • pp.1083-1089
    • /
    • 2008
  • We studied the dielectric characteristics of low-k SiOCH thin films by Ellipsometry. The SiOCH thin films were prepared by deposition of BTMSM precursors on p-Si wafer by CCP-PECVD method. The nano-porous structural organic/inorganic hybrid-type of SiOCH thin films correlated directly to the formation of low dielectrics close to pore(k=1). The structural groups including highly dense pores in SiOCH thin films originated the anisotropic geometry type of network structure directing to complex refractive characteristics of SiOCH single layer on the p-Si wafer. The linearly polarized beam of Xe-ramp in the range from 190 nm to 2100 nm introduced to the surface of SiOCH thin film, and the reflected beam was Elliptically polarized by complex refractive coefficients of SiOCH dipole groups. The amplitude variation $\Psi$ and phase variation $\Delta$ of the relative reflective coefficients between perpendicular and parallel components to the incident plane were measured by Ellipsometry. The complex optical constants n and k as well as the dielectric constant and thickness of SiOCH thin films were driven by the measured value of $\Psi$ and $\Delta$.

A Study About Design and Characteristic Improvement According to P-base Concentration Charge of 500 V Planar Power MOSFET (500 V 급 Planar Power MOSFET의 P 베이스 농도 변화에 따른 설계 및 특성 향상에 관한 연구)

  • Kim, Gwon Je;Kang, Ye Hwan;Kwon, Young-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.4
    • /
    • pp.284-288
    • /
    • 2013
  • Power MOSFETs(Metal Oxide Semiconductor Field Effect Transistor) operate as energy control semiconductor switches. In order to reduce energy loss of the device during switch-on state, it is essential to increase its conductance. We have experimental results and explanations on the doping profile dependence of the electrical behavior of the vertical MOSFET. The device is fabricated as $8.25{\mu}m$ cell pitch and $4.25{\mu}m$ gate width. The performances of device with various p base doping concentration are compared at Vth from 1.77 V to 4.13 V. Also the effect of the cell structure on the on-resistance and breakdown voltage of the device are analyzed. The simulation results suggest that the device optimized for various applications can be further optimized at power device.

An 0.4nm Resolution Encoder-like Capacitive Displacement Sensor (0.4nm 해상도의 엔코더 타입 전기용량형 변위센서)

  • Kang, Dae-Sil;Kim, Moo-Jin;Moon, Won-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1450-1454
    • /
    • 2007
  • A Contact-type Linear Encoder-like Capacitive Displacement Sensor (CLECDiS) has been developed to measure displacements at high accuracy within a long measurement range. In this paper, we have worked on improving the performance and reliability of the sensor. The performance increase can be done by introducing the smaller electrode patterns of $4{\mu}m$ width. In order to improve the reliability of the sensor we have changed the electrode layers from chrome-gold to chrome-gold-chrome and re-design its supporting structure. The newly-designed sensor is fabricated and tested to show that its sensitivity is $35pF/{\mu}m$, which implies that its resolution may be 0.36nm if SNR (Signal-to-Noise-Ratio) is 80.1dB. It is about ten times of that $(3.14pF/{\mu}m)$ of its previous version with 10${\mu}m$ electrodes. The total measurement range remains the same as the previous one; 15mm. The calibration experiments show its improved performance and reliability.

  • PDF

Electrorhelological Properties of Monodispersed Submicron-sized Hollow Polyaniline Adipate Suspension

  • Sung, Bo-Hyun;Choi, Ung-Su
    • KSTLE International Journal
    • /
    • v.6 no.1
    • /
    • pp.28-32
    • /
    • 2005
  • The electrorheoloRical (ER) fluids are composed of a colloidal dispersion of polarizable particles in insulating oil, and it's the rheological property changes by the applied electric field. These changed are reversible and occur fast within a fewmilliseconds. The ER properties of the ER fluid such as increment of viscosity and yield stress come from the particle chain structure induced by electric fleld. When formulating the ER fluid for a speciflc application, some requirement must besatisfled, which are high yield stress under electric field, rapid response, and dispersion stability. While this characteristic makes valuable ER fluids in valious industrial applications, their lung term and quiescent application has been limited because ofproblems with particle sedimentation. In an effort to overcome sedimentation problem of ER fluids, the anhydrous ER materials of monodispersed hollow polyaniline (PANI) and adipate derivative respectively with submicron-sized suspension providing wide operating temperature range and other advantage were synthesized in a four-step procedure. The ER fluidswere characterized by FT-lR, TGA, DLS, SEM, and TEM. Stability of the suspensions was examined by an UV spectroscopy.The rheological and electrical properties of the suspension were investigated Couette-type rheometer with a high voltagegenerator, current density, and conductivity. And the behavior of ER suspensions was observed by a video camera attached toan optical microscope under 3kV/mm. The suspensions showed good ER properties, durability, and particle dispersion.

Electrocatalytic activity of Carbon-supported near-surface alloys (NSAs) for Formic acid oxidation (개미산 산화 반응을 위한 카본 담지 표면 합금의 전기촉매 활성)

  • Park, In-Su;Choi, Jong-Ho;Lee, Kug-Seung;Jeon, Tae-Yeol;Sung, Yung-Eun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.459-462
    • /
    • 2006
  • Formic acid recently attracted attention as an alternative fuel for direct liquid fuel cells(DLFCs) due to its high theoretical open circuit voltage(1.45V). In this paper, a novel chemical strategy is described for the preparation and characterization of carbon-supported and surface-alloys, which were prepared by using a successive reduction process. After preparing Au colloid nanoparticles, the deposition of Au colloid nanoparticles occurred spontaneously in the carbon black-dispersed aqueous solution. Then nano-scaled Pt layer were formed on the surface of carbon-supported Au nanoparticles. The Au-Pt[x] showed the higher electrocatalytic activity than those of the particle-alloys and commercial one (Johnson-Matthey) for the reaction of formic acid oxidation when the mass-specific currents were compared. The increased electrocatalytic activity might be attributed to the effective surface structure of surface-alloys, which have a high utilization of active materials for the surface reaction of electrode.

  • PDF

Electrocatalytic activity of Carbon-supported near-surface alloys (NSAs) for Electode reaction of Fuel cell (연료전지 전극 반응을 위한 카본 담지 표면 합금의 전기촉매 활성)

  • Park, In-Su;Lee, Kug-Seung;Choi, Baeck-Beom;Sung, Yung-Eun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.316-319
    • /
    • 2006
  • There is a worldwide interest in the development and commercialization of Polymer Electrolyte Membrane Fuel Cells (PEMFCs) for vehicular and stationary applications. One of the major objectives is the reduction of loaded electrode materials, which is comprise of the Pt-based noble metals. In this paper, a novel chemical strategy is described for the preparation and characterization of carbon-supported and surface-alloys, which were prepared by using a successive reduction process. After preparing Au colloid nanoparticles, the deposition of Au colloid nanoparticles occurred spontaneously in the carbon black-dispersed aqueous solution. Then nano-scaled active materials were formed on the surface of carbon-supported Au nanoparticles. The structural and electrochemical analyses indicate that the active materials were deposited on the surface of Au nanoparticles selectively and that an at toying process occurred during the successive reducing process The carbon-supported & surface-alloys showed the higher electrocatalytic activity than those of the particle-alloys and commercial one (Johnson-Matthey) for the reaction of methanol and formic acid oxidation. The increased electrocatalytic activity might be attributed to the effective surface structure of surface-alloys, which have a high utilization of active materials for the surface reaction of electrode.

  • PDF

연 잎 구조를 응용한 금속 표면의 발수 특성 개발

  • Byeon, Eun-Yeon;Lee, Seung-Hun;Kim, Jong-Guk;Kim, Yang-Do;Kim, Do-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.167-167
    • /
    • 2013
  • 최근 발수 특성은 자동차 표면, 건축 구조물, 가전제품 및 모바일 기기 등 여러 분야에서 사용되고 점차 그 필요성이 대두되고 있다. 이러한 발수성의 표면은 연 잎이나 곤충의 날개, 도마뱀의 발바닥 등 자연계의 여러 곳에서 관찰 할 수 있다. 특히 연 잎의 표면에서 나타나는 초발수 특성이 마이크로와 나노 크기의 돌기 구조와 표피 왁스 성분에 기인한다는 것이 밝혀지면서 이를 응용한 다양한 연구가 진행되고 있다. 본 연구에서는 물리적인 표면처리로 마이크로와 나노 구조물을 형성하고 그 위에 표면에너지를 낮출 수 있는 물질을 증착하여, 발수 특성을 가지는 표면을 개발하였다. 알루미늄 표면에 마이크로 크기의 알루미나(Al2O3) 분말을 이용한 블라스트(blast) 공정으로 마이크로 구조를 형성하고, 선형 이온 소스(LIS)를 이용한 Ar 이온 빔 에칭으로 나노 구조를 형성하였다. FE-SEM 분석을 통해 수~수십 마이크로 구조 위에 나노 크기의 구조가 형성 된 것을 관찰하였다. 마이크로와 나노 구조가 형성된 알루미늄의 표면에너지를 낮추기 위해 trimethylsilane (TMS) 및 Ar을 이용한 플라즈마처리로 표면에 기능성 코팅막을 형성하였다. 그 결과 TMS처리 전에 비해 표면에너지가 99.75 mJ/m2에서 9.05 mJ/m2으로 급격히 낮아지고 접촉각이 $54^{\circ}$에서 $123^{\circ}$로 향상되었다.

  • PDF

유리 기판 위에 형성된 랜덤한 분포를 가지는 나노 구조물과 OLED 소자로의 적용 가능성

  • Park, U-Yeong;Hwang, Gi-Ung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.500-500
    • /
    • 2013
  • 특정한 유기 물질에 전류를 인가했을 때 발광을 하는 특성을 이용한 Organic Light Emitting Diode (OLED)는 뛰어난 색재현성, 적은 전력소모, 간단한 제조공정, 넓은 시야각 등으로 인해 PDP, LCD, LED에 이은 차세대 디스플레이 소자로 많은 관심을 받고 있다. 하지만 OLED는 각기 다른 굴절률을 가지는 다층구조로 되어있어 실질적으로 소자 밖으로 나오는 빛은 원래 생성된 빛의 20% 정도 밖에 되지 않는다. 이러한 광 손실을 줄이기 위해 Photonic Crystal (PC)이나 마이크로 렌즈 어레이(MLA) 부착 등과 같이 특정한 크기를 갖는 주기적인 나노 구조물을 이용한 광추출 효율 상승 방법은 특정 파장의 빛에서만 효과가 있는 한계가 있었으며 고가의 공정과정을 거쳐야 했으므로 OLED 소자의 가격 향상에 일조하였다. 이의 해결을 위해 본 연구는 유리기판 위에 랜덤한 분포를 가지는 나노 구조물 제작 공정법을 제안한다. 먼저 유리기판 위에 스퍼터로 금속 박막을 입혀 이를 Rapid thermal annealing (RTA) 공정을 이용하여 랜덤한 분포의 Island를 가지는 마스크를 제작하였다. 그 후 플라즈마 식각을 이용하여 유리기판에 나노 구조물을 형성하였고 기판 위에 남아있는 마스크는 Ultrasonic cleaning을 이용하여 제거하였다. 제작된나노구조물은 200~300 nm의 높이와 약 200 nm 폭을 가지고 있다. 제작된 유리기판의 OLED 소자로의 적용가능성을 알아보기 위한 광학특성 조사결과는 300~900 nm의 파장영역에서 맨유리와 거의 비슷한 수직 투과율을 보이면서 최대 50%정도의 Diffusion 비율을 나타내고 있고 임계각(41도) 이상의각도에서 인가된 빛의 투과율에 대해서도 향상된 결과를 보여주고 있다. 제안된 공정의 전체과정 기존의 PC, MLA 등의 공정에 비해 난이도가 쉽고 저가로 진행이 가능하며 추후 OLED 소자에 적용될 시 대량생산에 적합한 후보로 보고 있다.

  • PDF

Nonvolatile Memory and Photovoltaic Devices Using Nanoparticles

  • Kim, Eun Kyu;Lee, Dong Uk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.79-79
    • /
    • 2013
  • Quantum-structures with nanoparticles have been attractive for various electronic and photonic devices [1,2]. In recent, nonvolatile memories such as nano-floating gate memory (NFGM) and resistance random access memory (ReRAM) have been studied using silicides, metals, and metal oxides nanoparticles [3,4]. In this study, we fabricated nonvolatile memories with silicides (WSi2, Ti2Si, V2Si) and metal-oxide (Cu2O, Fe2O3, ZnO, SnO2, In2O3 and etc.) nanoparticles embedded in polyimide matrix, and photovoltaic device also with SiC nanoparticles. The capacitance-voltageand current-voltage data showed a threshold voltage shift as a function of write/erase voltage, which implies the carrier charging and discharging into the metal-oxide nanoparticles. We have investigated also the electrical properties of ReRAM consisted with the nanoparticles embedded in ZnO, SiO2, polyimide layer on the monolayered graphene. We will discuss what the current bistability of the nanoparticle ReRAM with monolayered graphene, which occurred as a result of fully functional operation of the nonvolatile memory device. A photovoltaic device structure with nanoparticles was fabricated and its optical properties were also studied by photoluminescence and UV-Vis absorption measurements. We will discuss a feasibility of nanoparticles to application of nonvolatile memories and photovoltaic devices.

  • PDF

Dispersion Properties and Photocatalytic Activities of TiO2 Powders Obtained by Homogeneous Precipitation Process at Low Temperature in a Acrylic Resin (저온균일침전법으로 제조된 TiO2 분말의 아크릴레진에서의 분산특성 및 광분해 효과)

  • Woo S. H.;Kim W. W.;Rhee C. K.
    • Journal of Powder Materials
    • /
    • v.11 no.6 s.47
    • /
    • pp.503-509
    • /
    • 2004
  • Dispersion stabilities and photocatalytic activities of rutile $TiO_{2}$ powders with unique nano-structure synthesized by homogeneous precipitation process at low temperature(HPPLT) have been investigated in the acrylic resin containing fluorostyrene in the range of 0~0.16 mole. Isoelectric point of $TiO_{2}$ in the acrylic resin placed in the neutral region whereas that of $TiO_{2}$ in the water placed in the acidic region, indicating that zeta potential and agglomeration of $TiO_{2}$ powder is strongly dependent on the pH and the type of solvent. To prepare an adhesion, an acrylic resin containing fluorostyrene was synthesized by a radical polymerization. The adhesion of coating layer was increased with increasing fluorostyrene's contents without changing the dispersion stabilities and degrading photocatalytic properties.