• Title/Summary/Keyword: nano fly ash

Search Result 19, Processing Time 0.022 seconds

Castor oil based hyperbranched polyester/bitumen modified fly ash nanocomposite

  • Bhagawati, Deepshikha;Thakur, Suman;Karak, Niranjan
    • Advances in nano research
    • /
    • v.4 no.1
    • /
    • pp.15-29
    • /
    • 2016
  • A low cost environmentally benign surface coating binder is highly desirable in the field of material science. In this report, castor oil based hyperbranched polyester/bitumen modified fly ash nanocomposites were fabricated to achieve the desired performance. The hyperbranched polyester resin was synthesized by a three-step one pot condensation reaction using monoglyceride of castor oil based carboxyl terminated pre-polymer and 2,2-bis (hydroxymethyl) propionic acid. Also, the bulk fly ash of paper industry waste was converted to hydrophilic nano fly ash by ultrasonication followed by transforming it to an organonano fly ash by the modification with bitumen. The synthesized polyester resin and its nanocomposites were characterized by different analytical and spectroscopic tools. The nanocomposite obtained in presence of 20 wt% styrene (with respect to polyester) was found to be more homogeneous and stable compared to nanocomposite without styrene. The performance in terms of tensile strength, impact resistance, scratch hardness, chemical resistance and thermal stability was found to be improved significantly after formation of nanocomposite compared to the pristine system after curing with bisphenol-A based epoxy and poly(amido amine). The overall results of transmission electron microscopic (TEM) analysis and performance showed good exfoliation of the nano fly ash in the polyester matrix. Thus the studied nanocomposites would open up a new avenue on development of low cost high performing surface coating materials.

Micro and Nano Engineered High Volume Ultrafine Fly Ash Cement Composite with and without Additives

  • Roychand, R.;De Silva, S.;Law, D.;Setunge, S.
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.1
    • /
    • pp.113-124
    • /
    • 2016
  • This paper presents the effect of silica fume and nano silica, used individually and in combination with the set accelerator and/or hydrated lime, on the properties of class F high volume ultra fine fly ash (HV-UFFA) cement composites, replacing 80 % of cement (OPC). Compressive strength test along with thermogravimetric analysis, X-ray diffraction and scanning electron microscopy were undertaken to study the effect of various elements on the physico-chemical behaviour of the blended composites. The results show that silica fume when used in combination with the set accelerator and hydrated lime in HV-UFFA cement mortar, improves its 7 and 28 day strength by 273 and 413 %, respectively, compared to the binary blended cement fly ash mortar. On the contrary, when nano silica is used in combination with set accelerator and hydrated lime in HV-UFFA cement mortar, the disjoining pressure in conjunction with the self-desiccation effect induces high early age micro cracking, resulting in hindering the development of compressive strength. However, when nano silica is used without the additives, it improves the 7 and 28 day strengths of HV-UFFA cement mortar by 918 and 567 %, respectively and the compressive strengths are comparable to that of OPC.

Hydration and Mechanical Properties of High-volume Fly Ash Concrete with Nano-silica (나노 실리카를 혼입한 하이볼륨 플라이애시 콘크리트의 수화도 및 역학적 특성)

  • Cha, Soo-Won;Lee, Geon-Wook;Choi, Young-Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.112-119
    • /
    • 2022
  • Recently, as carbon neutrality has been important factor in the construction industry, many studies have been conducted on the high-volume fly ash concrete. High volume fly ash concrete(HVFC) is usually made by replacing more than 50% of cement with fly ash. However, HVFC has a disadvantage of low compressive strength in early age. To overcome this shortcoming of HVFC, improve this, interest in techonolgy using nanomaterials is increasing. Nano silica is expected to improve the early age strength of HVFC as a pozzolanic material. This study investigated the effect of nano silica on the early hydration reaction and microstructure of HVFC. The early hydration reaction of HFVC was analyzed through setting time, isothermal calorimeter, compressive strength and thermal weight analysis. In addition, the microstructure of HVFC was measured by mercury intrusion porosimetry. From the test results, it was confirmed that nano silica increased the early age strength and improve the microstructure of HVFC.

Thermal Property of Geopolymer Ceramics Based on Fly Ash-Blast Furnace Slag (플라이애시-고로슬래그 기반 지오폴리머 세라믹스의 열적특성)

  • Kim, Jin-Ho;Nam, In-Tak;Park, Hyun;Kim, Kyung-Nam
    • Korean Journal of Materials Research
    • /
    • v.26 no.10
    • /
    • pp.521-527
    • /
    • 2016
  • Geopolymers have many advantages over Portland cement, including energy efficiency, reduced greenhouse gas emissions, high strength at early age and improved thermal resistance. Alkali activated geopolymers made from waste materials such as fly ash or blast furnace slag are particularly advantageous because of their environmental sustainability and low cost. However, their durability and functionality remain subjects for further study. Geopolymer materials can be used in various applications such as fire and heat resistant fiber composites, sealants, concretes, ceramics, etc., depending on the chemical composition of the source materials and the activators. In this study, we investigated the thermal properties and microstructure of fly ash and blast furnace slag based geopolymers in order to develop eco-friendly construction materials with excellent energy efficiency, sound insulation properties and good heat resistance. With different curing times, specimens of various compositions were investigated in terms of compressive strength, X-ray diffraction, thermal property and microstructure. In addition, we investigated changes in X-ray diffraction and microstructure for geopolymers exposed to $1,000^{\circ}C$ heat.

Observation of nano powders and fly ash usage effects on the fluidity features of grouts

  • Celik, Fatih;Yildiz, Oguzhan;Bozkir, Samet M.
    • Advances in nano research
    • /
    • v.13 no.1
    • /
    • pp.13-28
    • /
    • 2022
  • The pumpability of the grouts is significant issue in concept of the rheological and workability properties during penetrating to voids and cracks. To improve the fluidity features of the grout mixes, the usage of Colloidal Nano Particular Powders (CNPPs) with mineral additives such as fly ash (FA) can contribute. Therefore, the main purpose of this study can be explained as investigating the usage effects of four types of Colloidal Nano Particular Powders (n-TiO2, n-ZnO, n-Al2O3 and n-SiO2) as nano additives on the rheological, workability and bleeding properties of cement-based grout incorporated with fly as. Test results showed that the usage of FA in the grout samples positively contribute to increase on the fluidity of the grout samples as expected. The dilatant behavior was observed from the results for all mixes. Observing the effect of nano-sized additives in such cement-based grout mixtures with high fluidity has presented remarkable effects in this study.

Analysis of Nanostructural Deformation Behavior of Cement Clinker Substituting High-volume Fly ash by Pair Distribution Function (원자짝 분포 함수를 이용한 플라이애시를 대량 치환한 시멘트 클링커의 나노 구조 변형 거동 해석)

  • Jee, Hyeon-Seok;Park, Jae-Yeon;Bae, Sung-Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.112-113
    • /
    • 2019
  • Recently, supplementary cementitious materials such as blast-furnace slag, fly ash and silica fume have been widely used as substitutes for cementitious materials. In this study, the deformation behavior of compressive loading of C3S paste with 50% fly ash was analyzed by X-ray scattering data and pair distribution function analysis. The obtained results were compared with 131-day-old pure C3S paste. The Ca(OH)2 of the C3S-FA paste showed almost complete elastic behavior, consistent with the deformation behavior of the r-range of 20 to 40, and the C-S-H phase contributed to the range of PDF r-range of less than 20. In addition, C-S-H of C3S-FA showed greater deformation resistance than C3S paste.

  • PDF

Mechanical and Electrical Properties of Low-Cement Mortar Using a Large Amount of Industrial By-Products (산업부산물을 다량활용한 저시멘트 모르타르의 역학적·전기적 특성)

  • Kim, Young-Min;Im, Geon-Woo;Lim, Chang-Min;Lee, Gun-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.43-44
    • /
    • 2023
  • This study evaluated the mechanical and electrical properties of low-cement mortar using a large amount of industrial by-products to reduce carbon emissions from the cement industry. As types of industrial by-products, blast furnace slag and fly ash, which are representative materials, were used, and ultra-high fly ash was mixed and evaluated to solve the problem of initial strength loss. In addition, in order to evaluate the electrical properties, 1% of MWCNT was incorporated relative to the powder mass. As experimental items, the compressive strength was measured on the 1st, 3rd, 7th and 28th days of age, and the rate of change in electrical resistance was measured on the 28th day of age. As a result of the experiment, the initial strength of the test specimen mixed with blast furnace slag and fly ash was significantly lower than that of 100% cement, and the specimen mixed with blast furnace slag showed strength equal to that of cement at 28 days of age. As an electrical characteristic, the electrical resistance was reduced when the load was loaded, and this reason is judged to be the effect of improving the conductivity as the connection between CNTs is narrowed by the compressive load.

  • PDF

An experimental study on effect of Colloidal Nano-Silica on tetranary blended concrete

  • Reddy, Avuthu Narender;Meena, T.
    • Advances in concrete construction
    • /
    • v.7 no.2
    • /
    • pp.107-115
    • /
    • 2019
  • The possibility of using a combination of mineral admixtures as a replacement for cement may reduce the $CO_2$ emission which causes global warming and climatic changes on the environment. By using the combination of different byproducts from various industries, for replacing cement in concrete leads to saving in energy and natural resources. In this article, an attempt has been made to study the mechanical and water absorption properties of concrete incorporated with combination of Fly ash (FA), Alccofine (ALC) and Collodial Nano Silica (CNS) at 7, 28 and 56 days curing period. Cement has been partially replaced by combination of FA at 25%, ALC at 10% and CNS at 0.5%, 1%, 2% and 3% with water cement ratio of 0.43. The result indicates that the incorporation of combination of FA, ALC and CNS can be very effective in improvement of mechanical and water absorption properties of concrete. The Mix with a combination of 25% FA, 10% ALC and 1% CNS is most effective in improvement of mechanical and water absorption properties as compared with all other mixes.

Mechanical and Electrical Properties of Self-sensing Grout Material with a High-Volume Ultrafine Fly Ash Replacement (초고분말 플라이 애시를 다량 치환한 자기감지형 그라우트재의 역학적 및 전기적 특성)

  • Lee, Gun-Cheol;Kim, Young-Min;Im, Geon-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.2
    • /
    • pp.215-226
    • /
    • 2024
  • This study presents an experimental investigation into the performance of self-sensing grout formulated with a high volume of ultra-fine fly ash(UHFA). To explore the potential benefits of alternative cementitious materials, the research examined the effect of substituting UHFA with equal parts of blast furnace slag(BFS) fine powder. Both UHFA and BFS are byproducts generated in significant quantities by industrial processes. The evaluation focused on the fresh properties of the grout, including its flow characteristics, as well as the hardened properties such as compressive strength, dimensional stability(length change rate), and electrical properties. The experimental results demonstrated that incorporating UHFA resulted in a substantial reduction in the plastic viscosity of the grout, translating to improved flowability. Additionally, the compressive strength of the UHFA-modified grout surpassed that of the reference grout(without UHFA substitution) at all curing ages investigated. Interestingly, the electrical characteristics, as indicated by the relationships between FCR-stress and FCR-strain, exhibited similar trends for both grout mixtures.

Suggestion of Physicochemical Characteristics and Safety Management in the Waste Containing Nanomaterials from Engineered Nano-materials Manufacturing Plants and Waste Treatment Facilities (산업용제조시설과 폐기물처리시설에서 발생된 나노폐기물의 물리화학적 특성 및 안전관리방안 제시)

  • Kim, Woo-Il;Yeon, Jin-Mo;Cho, Na-Hyeon;Kim, Yong-Jun;Um, Nam-Il;Kim, Ki-Heon;Lee, Young-Kee
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.7
    • /
    • pp.670-682
    • /
    • 2018
  • Engineered nanomaterials (ENMs) can be released to humans and the environment through the generation of waste containing engineered nanomaterials (WCNMs) and the use and disposal of nano-products. Nanoparticles can also be introduced intentionally or unintentionally into waste streams. This study examined WCNMs in domestic industries, and target nanomaterials, such as silicon dioxide, titanium oxide, zinc oxide, nano silver, and carbon nanotubes (CNTs), were selected. We tested 48 samples, such as dust, sludge, ash, and by-products from manufacturing facilities and waste treatment facilities. We analyzed leaching and content concentrations for heavy metals and hazardous constituents of the waste. Chemical compositions were also measured by XRD and XRF, and the unique properties of nano-waste were identified by using a particle size distribution analyzer and TEM. The dust and sludge generated from manufacturing facilities and the use of nanomaterials showed higher concentrations of metals such as lead, arsenic, chromium, barium, and zinc. Oiled cloths from facilities using nano silver revealed high concentrations of copper, and the leaching concentrations of copper and lead in fly ash were higher than those in bottom ash. In XRF measurements at the facilities, we detected compounds such as silicon dioxide, sulfur trioxide, calcium oxide, titanium dioxide, and zinc oxide. We found several chemicals such as calcium oxide and silicon dioxide in the bottom ash of waste incinerators.