DOI QR코드

DOI QR Code

An experimental study on effect of Colloidal Nano-Silica on tetranary blended concrete

  • Reddy, Avuthu Narender (Department of Structural and Geo-Technical Engineering, School of Civil Engineering (SCE), Vellore Institute of Technology (VIT-Vellore)) ;
  • Meena, T. (Department of Structural and Geo-Technical Engineering, School of Civil Engineering (SCE), Vellore Institute of Technology (VIT-Vellore))
  • Received : 2018.08.10
  • Accepted : 2019.03.17
  • Published : 2019.04.25

Abstract

The possibility of using a combination of mineral admixtures as a replacement for cement may reduce the $CO_2$ emission which causes global warming and climatic changes on the environment. By using the combination of different byproducts from various industries, for replacing cement in concrete leads to saving in energy and natural resources. In this article, an attempt has been made to study the mechanical and water absorption properties of concrete incorporated with combination of Fly ash (FA), Alccofine (ALC) and Collodial Nano Silica (CNS) at 7, 28 and 56 days curing period. Cement has been partially replaced by combination of FA at 25%, ALC at 10% and CNS at 0.5%, 1%, 2% and 3% with water cement ratio of 0.43. The result indicates that the incorporation of combination of FA, ALC and CNS can be very effective in improvement of mechanical and water absorption properties of concrete. The Mix with a combination of 25% FA, 10% ALC and 1% CNS is most effective in improvement of mechanical and water absorption properties as compared with all other mixes.

Keywords

References

  1. Ahmed Abubakar, J., Dhaduk, D., Abhishek, R., Rathod, J.S. and Pritesh. (2016), "Experimental study on the enhancement in concrete due to the ultra-fine particles", Global Res. Develop. J. Eng., 138, 120-135.
  2. Aly, M., Hashmi, M.S.J., Olabi, A.G., Messeiry, M., Abadir, E.F. and Hussain, A.I. (2012), "Effect of colloidal nano-silica on the mechanical and physical behavior of waste-glass cement mortar", Mater. Des., 33, 127-135. https://doi.org/10.1016/j.matdes.2011.07.008
  3. Andrew, R.M. (2018), "Global $CO_2$ emissions from cement production", Earthq. Syst. Sci. Data., 10, 195-217. https://doi.org/10.5194/essd-10-195-2018
  4. ASTM C494 (2017), Standard Specification for Chemical Admixture for Concrete, West Conshohocken, USA.
  5. ASTM C642 (2013), Standard Test Method for Density, Absorption, and Voids in Hardened Concrete, West Conshohocken, USA.
  6. ASTM C989 (1999), Standard Specification for Ground Granulated Blast-furnace Slag for Use in Concrete and Mortars, West Conshohocken, USA.
  7. Barbhuiya, S., Chow, P. and Das, A. (2014), "Nanomechanical properties of cement paste containing silica fume", Proced. Int. Conf. Arct. Civil Eng., (ICAACE'14), 25-26.
  8. Berra, M., Carassiti, F., Mangialardi, T., Paolini, A.E. and Sebastiani, M. (2012), "Effects of nanosilica addition on workability and compressive strength of Portland cement pastes", Constr. Build. Mater., 35, 666-675. https://doi.org/10.1016/j.conbuildmat.2012.04.132
  9. Bharat, B., Jindal, D.S., Sanjay, K., Deepankar, K.A. and Parveen. (2017), "Improving compressive strength of low calcium fly ash geopolymer concrete with alccofine", Adv. Concrete Constr., 5(1), 17-29. https://doi.org/10.12989/acc.2017.5.1.17
  10. Bhuvaneshwari, B., Sasmal, S., Baskaran, T. and Nagesh, R.I. (2012), "Role of nano oxides for improving cementitious building materials", J. Civil Eng. Sci., 1, 52-58.
  11. BIS 10262 (2009), Concrete Mix Proportioning-Guidelines, New Delhi, India.
  12. BIS 12269 (2013), Ordinary Portland Cement 53 Grade-Specification, New Delhi, India.
  13. BIS 3812 (2013), Pulverized Fuel Ash-Specification, Part 1 for Use as Pozzolana in Cement, Cement Mortar and Concrete, New Delhi, India.
  14. BIS 383 (2016), Specification for Coarse and Fine Aggregates from Natural Sources for Concrete, New Delhi, India.
  15. BIS 456 (2000), Plain and Reinforced Concrete-Code of Practice is an Indian Standard Code of Practice for General Structural Use of Plain and Reinforced Concrete, New Delhi, India.
  16. BIS 516 (1959), Methods of Tests for Strength of Concrete, New Delhi, India.
  17. Chithra, S., Senthil Kumar, S.R.R. and Chinnaraju, K. (2016), "The effect of Colloidal Nano-silica on workability, mechanical and durability properties of High Performance Concrete with Copper slag as partial fine aggregate", Constr. Build. Mater., 113, 794-804. https://doi.org/10.1016/j.conbuildmat.2016.03.119
  18. Erdem, S., Dawson, A.R. and Howard Thom, N. (2012), "Influence of the micro-and nano-scale local mechanical properties of the interfacial transition zone on impact behaviour of concrete made with different aggregates", Cement Concrete Res., 42, 447-458. https://doi.org/10.1016/j.cemconres.2011.11.015
  19. Gnanasoundarya, S., Varun Teja, K. and Meena, T (2017), "Experimental study on ternary blended concrete under elevated temperature", Int. J. Civil Eng. Tech., 8(5), 895-903.
  20. Gopalakrishnan, K., Birgisson, B., Taylor, P. and Nii, O.A.O. (2011), Nanotechnology in Civil Infrastructure, Springer, Berlin, Heidelberg, Germany.
  21. Jalal, M., Mansouri, E., Sharifipour, M. and Pouladkhan, A.R. (2012), "Mechanical, rheological, durability and microstructural properties of high performance self-compacting concrete containing $SiO_2$ micro and nanoparticles", Mater. Des., 34, 389-400. https://doi.org/10.1016/j.matdes.2011.08.037
  22. Jalal, M., Mortazavi, A.A. and Hassani, N. (2012), "Thermal properties of $TiO_2$ nanoparticles binary blended cementitious composites", J. Am. Sci., 8(7), 391-394.
  23. Jalal, M., Pouladkhan, A.R., Ramezanianpour, A.A. and Norouzi, H. (2012), "Effects of silica nanopowder and silica fume on rheology and strength of high strength self-compacting concrete", J. Am. Sci., 8(4), 270-277.
  24. Jindal, B.B., Anand, A. and Badal, A. (2016), "Development of high strength fly ash based geopolymer concrete with alccofine", IOSR J. Mech. Civil Eng., 55-58.
  25. Jindal, B.B., Singhal, D., Sharma, S.K. and Parveen. (2017), "Prediction of mechanical properties of alccofine activated low calcium fly ash based geopolymer concrete", ARPN J. Eng. Appl. Sci., 12(9), 3022-3031.
  26. Jindal, B.B., Singhal, D., Sharma, S.K. and Parveen. (2017), "Suitability of ambient-cured alccofine added low-calcium fly ash-based geopolymer concrete", Ind. J. Sci. Technol., 10(12), 1-10.
  27. Krishna, C.B.R. and Jagadeesh, P. (2017), "Influence of admixtures on plastic wastes in an eco-friendly concrete a review", Int. J. Civil Eng. Tech., 8(6), 388-397.
  28. Kupwade-Patil, K., Al-Aibani, A.F., Abdulsalam, M.F., Mao, C., Bumajdad, A., Palkovic, S.D. and Buyukozturk, O. (2016), "Microstructure of cement paste with natural pozzolanic volcanic ash and Portland cement at different stages of curing", Constr. Build. Mater., 113, 423-441. https://doi.org/10.1016/j.conbuildmat.2016.03.084
  29. Li, H., Zhang, M.H. and Ou, J.P. (2007), "Flexural fatigue performance of concrete containing nano-particles for pavement", Int. J. Fatig., 29, 1292-1301. https://doi.org/10.1016/j.ijfatigue.2006.10.004
  30. Ltifi, M., Guefrech, A., Mounanga, P. and Khelidj, A. (2011), "Experimental study of the effect of addition of nano-silica on the behaviour of cement mortars", Procedia Eng., 10, 900-905. https://doi.org/10.1016/j.proeng.2011.04.148
  31. Malhotra, V. (2002), "Introduction: Sustainable development and concrete technology", Concrete Int., 24(7), 235-242.
  32. Martin, A., Pastor, J.Y., Palomo, A. and Jimenez, A.F. (2015), "Mechanical behaviour at high temperature of alkali-activated aluminosilicates (geopolymers)", Constr. Build. Mater., 93, 1188-1196. https://doi.org/10.1016/j.conbuildmat.2015.04.044
  33. Morsy, M.S., Al Salloum, Y.A., Abbas, H. and Alsayed, S.H. (2012), "Behavior of blended cement mortars containing nanometakaolin at elevated temperatures", Constr. Build. Mater., 35, 900-905. https://doi.org/10.1016/j.conbuildmat.2012.04.099
  34. Naji Givi, A.R., Abdul Rashid, S. and Nora, A.A.F. (2010), "Salleh A. M. M. Experimental investigation of the size effects of $SiO_2$ nano-particles on the mechanical properties of binary blended concrete", Compos. Part B-Eng., 41, 673-677. https://doi.org/10.1016/j.compositesb.2010.08.003
  35. Narender Reddy, A. and Meena, T. (2017), "A comprehensive overview on performance of nano-silica concrete", Int. J. Phar. Tech., 9(1), 5518-5529.
  36. Narender Reddy, A. and Meena, T. (2017), "An experimental investigation on mechanical behaviour of eco-friendly concrete", IOP Conf. Series: Mater. Sci. Eng., 263, 032010. https://doi.org/10.1088/1757-899X/263/3/032010
  37. Narender Reddy, A. and Meena, T. (2017), "Behavior of ternary blended concrete under compression", Int. J. Civil Eng Tech., 8(4), 2089-2097.
  38. Narender Reddy, A. and Meena, T. (2018), "A study on compressive behavior of ternary blended concrete incorporating alccofine", Mater. Today Proc., 5, 11356-11363. https://doi.org/10.1016/j.matpr.2018.02.102
  39. Narender Reddy, A. and Meena, T. (2018), "Study on effect of colloidal nano silica blended concrete under compression", Int. J. Eng. Tech., 7(10), 210-213.
  40. Nazari, A. and Riahi, Sh. (2010), "Microstructural, thermal, physical and mechanical behavior of the self-compacting concrete containing $SiO_2$ nanoparticles", Mater. Sci. Eng. AStruct., 527, 7663-7672. https://doi.org/10.1016/j.msea.2010.08.095
  41. Nazari, A. and Riahi, Sh. (2010), "The effect of $TiO_2$ nanoparticles on water permeability and thermal and mechanical properties of high strength self-compacting concrete", Mater. Sci. Eng. AStruct., 528, 756-763. https://doi.org/10.1016/j.msea.2010.09.074
  42. Nazari, A. and Riahi, Sh. (2011), "Splitting tensile strength of concrete using ground granulated blast furnace slag and $SiO_2$ nanoparticles as binder", Energy Build., 43, 864-872. https://doi.org/10.1016/j.enbuild.2010.12.006
  43. Nazari, A. and Riahi, Sh. (2011), "The effects of $SiO_2$ nanoparticles on physical and mechanical properties of high strength compacting concrete", Compos. Part B-Eng., 42, 570-578. https://doi.org/10.1016/j.compositesb.2010.09.025
  44. Oltulu, M. and Sahin, R. (2011), "Single and combined effects of nano-$SiO_2$, nano-$Al_2O_3$ and nano-$Fe_2O_3$ powders on compressive strength and capillary permeability of cement mortar containing silica fume", Mater. Sci. Eng. A-Struct., 528, 7012-7019. https://doi.org/10.1016/j.msea.2011.05.054
  45. Quercia, G. and Brouwers, H.J.H. (2010), "Application of nanosilica (nS) in concrete mixtures", 8th fib PhD Symposium in Kgs, Lyngby, Denmark.
  46. Quercia, G., Husken, G. and Brouwers, H.J.H. (2012), "Water demand of amorphous nano silica and its impact on the workability of cement paste", Cement Concrete Res., 42, 344-357. https://doi.org/10.1016/j.cemconres.2011.10.008
  47. Raiess Ghasemi, A.M., Parhizkar, T. and Ramezanianpour, A.A. (2010), "Influence of colloidal nano-$SiO_2$ addition as silica fume replacement material in properties of concrete", Sec. Int. Conf. Sus. Const. Mater. Tech., University of Politecnica delle Marche, Ancona.
  48. Sabarish, K.V., Venkat Raman, R., Ancil, R., Wasim Raja, R. and Selva Surendar, P. (2017), "Experimental studies on partial replacement of cement with fly ash in concrete elements", Int. J. Civil Eng. Tech., 8(9), 293-298.
  49. Saha, S. and Rajasekaran, C. (2016), "Mechanical properties of recycled aggregate concrete produced with Portland pozzolana cement", Adv. Concrete Constr., 4(1), 27-35. https://doi.org/10.12989/acc.2016.4.1.027
  50. Said, A.M., Zeidan, M.S., Bassuoni, M.T. and Tian, Y. (2012), "Properties of concrete incorporating nano-silica", Constr. Build. Mater., 36, 838-844. https://doi.org/10.1016/j.conbuildmat.2012.06.044
  51. Sanchez, F. and Sobolev, K. (2010), "Nanotechnology in concrete - a review", Constr. Build. Mater., 24, 2060-2071. https://doi.org/10.1016/j.conbuildmat.2010.03.014
  52. Senff, L., Hotza, D., Lucas, S. and Ferreira, V.M. (2012), "Effect of nano-$SiO_2$ addition on the rheological behavior and the hardened properties of cement mortars and concrete", Mater. Sci. Eng. A-Struct., 532, 354-361. https://doi.org/10.1016/j.msea.2011.10.102
  53. Shaikh, F.U.A., Supit, S.W.M. and Sarker, P.K. (2014), "A study on the effect of nano silica on compressive strength of high volume fly ash mortars and concretes", Mater. Des., 60, 433-442. https://doi.org/10.1016/j.matdes.2014.04.025
  54. Shi, X., Xie, N., Fortune, K. and Gong, J. (2012), "Durability of steel reinforced concrete in chloride environments (An overview)", Constr. Build. Mater., 30, 125-138. https://doi.org/10.1016/j.conbuildmat.2011.12.038
  55. Singh, L.P., Karade, S.R., Bhattacharyya, S.K., Yousuf, M.M. and Ahalawat, S. (2013), "Beneficial role of nanosilica in cement based materials - A review", Constr. Build. Mater., 47, 1069-1077. https://doi.org/10.1016/j.conbuildmat.2013.05.052
  56. Singh, V.K., Srivastava, V., Agarwal, V.C and Harison, A. (2015), "Effect of fly ash as partical replacement of cement in PPC cement", Int. J. Res. Sci. Eng. Tech., 4, 6212-6217.
  57. Varun Teja, K., Purna Chandra, P. and Meena, T. (2017), "Investigation on the behaviour of ternary blended concrete with SCBA and SF", IOP Conf. Series: Mater. Sci. Eng., 263, 032012. https://doi.org/10.1088/1757-899X/263/3/032012
  58. Yuvaraj, S., Sujimohankumar, D., Dinesh, N. and Karthic, C. (2012), "Experimental research on improvement of concrete strength and enhancing the resisting property of corrosion and permeability by the use of nano silica flyashed concrete", Int. J. Emer. Tech. Adv. Eng., 2, 105-110.
  59. Zhang, M.H. and Li, H. (2011), "Pore structure and chloride permeability of concrete containing nano-particles for pavement", Constr. Build. Mater., 25, 608-616. https://doi.org/10.1016/j.conbuildmat.2010.07.032

Cited by

  1. Strength enhancement of concrete incorporating alccofine and SNF based admixture vol.9, pp.4, 2020, https://doi.org/10.12989/acc.2020.9.4.345
  2. Microstructure and mechanical behavior of cementitious composites with multi-scale additives vol.11, pp.2, 2019, https://doi.org/10.12989/acc.2021.11.2.163