• Title/Summary/Keyword: nano fiber

Search Result 442, Processing Time 0.022 seconds

Characterization of silica nano-particle filled poly (ethylene 2,6-naphthalate) (실리카 나노입자 충진 폴리에틸렌 나프탈레이트의 특성)

  • Ahn, Seon-Hoon;Kim, Seong-Hun;Im, Seung-Soon;Lee, Seung-Goo
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.52-55
    • /
    • 2003
  • Poly (ethylene 2, 6-naphthalate) (PEN) has been used for a high performance engineering plastics such as fiber, film, and packaging, because of excellent physical properties and outstanding gas barrier characteristics [1-2]. However, the application of PEN is limited because PEN exhibits a relatively high melt viscosity. Recently, many researches for organic/inorganic composites by applying nano-particles to the polymer matrix have been carried out [3], and the nano-particles exhibited greatly improved mechanical and rheological properties [4]. (omitted)

  • PDF

On-line Measurement and Characterization of Nano-web Qualities Using a Stochastic Sensor Fusion System Design and Implementation of NAFIS(NAno-Fiber Information System)

  • Kim, Joovong;Lim, Dae-Young;Byun, Sung-Weon
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10a
    • /
    • pp.45-46
    • /
    • 2003
  • A process control system has been developed for measurement and characterization of the nanofiber web qualities. The nano-fiber information system (NAFIS) developed consists of a measurement device and an analysis algorithm, which are a microscope-laser sensor fusion system and a process information system, respectively. It has been found that NAFIS is so successful in detecting irregularities of pore and diameter that the resulting product has been quitely under control even at the high production rate. Pore distribution, fiber diameter and mass uniformity have been readily measured and analyzed by integrating the non-contact measurement technology and the random function-based time domain signal/image processing algorithm. Qualifies of the nano-fiber webs have been revealed in a way that the statistical parameters for the characteristics above are calculated and stored in a certain interval along with the time-specific information. Quality matrix, scale of homogeneity is easily obtained through the easy-to-use GUI information. Finally, ANFIS has been evaluated both for the real-time measurement and analysis, and for the process monitoring.

  • PDF

Graphene Coated Optical Fiber SPR Biosensor

  • Kim, Jang Ah;Hwang, Taehyun;Dugasani, Sreekantha Reddy;Kulkarni, Atul;Park, Sung Ha;Kim, Taesung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.401-401
    • /
    • 2014
  • In this study, graphene, the most attractive material today, has been applied to the wavelength-modulated surface plasmon resonance (SPR) sensor. The optical fiber sensor technology is the most fascinating topic because of its several benefits. In addition to this, the SPR phenomenon enables the detection of biomaterials to be label-free, highly sensitive, and accurate. Therefore, the optical fiber SPR sensor has powerful advantages to detect biomaterials. Meanwhile, Graphene shows superior mechanical, electrical, and optical characteristics, so that it has tremendous potential to be applied to any applications. Especially, grapheme has tighter confinement plasmon and relatively long propagation distances, so that it can enhance the light-matter interactions (F. H. L. Koppens, et al., Nano Lett., 2011). Accordingly, we coated graphene on the optical fiber probe which we fabricated to compose the wavelength-modulated SPR sensor (Figure 1.). The graphene film was synthesized via thermal chemical vapor deposition (CVD) process. Synthesized graphene was transferred on the core exposed region of fiber optic by lift-off method. Detected analytes were biotinylated double cross-over DNA structure (DXB) and Streptavidin (SA) as the ligand-receptor binding model. The preliminary results showed the SPR signal shifts for the DXB and SA binding rather than the concentration change.

  • PDF

Thermotropic Liquid Crystal Polymer or Silica Nano-particle Filled Polyester Composite Fibers

  • Kim, Seong-Hun;Kim, Jun-Young;Ahn, Seon-Hoon
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10a
    • /
    • pp.65-66
    • /
    • 2003
  • Ternary blend fibers (TBFs) based on melt blends of PEN, PET, and TLCP were prepared by melt blending and spinning to achieve high performance fibers. The reinforcement effect and the TLCP fibrillar structure resulted in the improvement of mechanical properties for TBFs. Molecular orientation was an important factor in determining the tensile strength and modulus of TBFs. Another part of this research is silica nano-particle filled PEN composites were melt-blended to improve mechanical and physicalproperties, and processability. The tensile modulus and strength were improved adding silica nano-particles to the PEN. The decreased melt viscosity by the fumed silica resulted in the improvement of the processability. The fumed silica may act as a nucleating agent in the PEN matrix.

  • PDF

Effects of Alkali Treated Nano-kenaf Fiber in Polypropylene Composite upon Mechanical Property Changes (알카리로 처리된 나노케냐프 섬유가 PP 복합소재 내에서 기계적 물성 변화에 미치는 영향)

  • Oh, Jeong Seok;Lee, Seong-Hoon;Kim, Kwang-Jea
    • Polymer(Korea)
    • /
    • v.39 no.1
    • /
    • pp.99-106
    • /
    • 2015
  • The surface of nano-kenaf containing cellulose fibers was treated with alkali (NaOH) and their effects on the physical properties of the polypropylene (PP) composite were investigated. The treatment of alkali on the fibers increased the melt flow index (M.I.), elongation%, and impact strength, while it decreased the tensile strength, flexural modulus and heat deflection temperature (HDT) of the compound compared to the untreated one. It seemed the alkali treatment on the nano-kenaf fiber changed the character of the fiber due to removal of impurities and chemicals on the surface and resulted in decreased interfacial adhesion between the nano-fiber surface and the PP matrix and changed the character of the PP.

Arc-Flash Detection Sensor Based on Surface Coupling of Plastic Optical Fiber (플라스틱 광섬유 표면 입사 현상을 이용한 아크플래시 검출 광센서)

  • Jeong, Hoonil;Kim, Myoung Jin;Kim, Young Ho;Kim, Youngwoong;Rho, Byung Sup
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.208-212
    • /
    • 2016
  • In this work, a loop sensor for Arc-Flash detections has been developed in order to trip a circuit breaker within 2.5 ms after an Arc-Flash event. For an efficient capturing of the flash light, plastic optical fibers, where light attenuations are larger than those in silica-based ones, with different diameters and surface conditions were utilized. The performance was comparatively analyzed with those of a point sensor and a commercialized product. The point sensor module was designed for hemisphere-like capturings of Arc-Flashes larger than 3 kA at 2 meters from the sensor. On the other hand, the loop sensor allowed 360-degree-detections around the fiber axis and the measurement range was dependent on the length of the fiber connected to the sensor module. The trip-level-dependent brightness measurement results showed that the fabricated point sensor and loop sensor satisfied a brightness condition, 10~40 klux, and the responses of the system to Arc-Flashes were completed within 2.5 ms.

A Study on Electromagnetic Interference Shielding Effectiveness of the Aluminum film, Conductive Fabric and Nano Carbon black/Carbon Fiber Reinforced Composites (알루미늄 필름, 전도성 직조섬유/나노 카본블랙 탄소섬유복합재료의 전자파 차폐효과에 관한 연구)

  • Han, Gil-Young;Song, Dong-Han;Bae, Ji-Soo;Ahn, Dong-Gyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.4
    • /
    • pp.10-16
    • /
    • 2008
  • This study investigated electromagnetic interference(EMI) shielding effectiveness(SE) of the aluminum film, conductive fabric and nano carbon black carbon fiber reinforced composites. We fabricated carbon fiber reinforced composites filled with nano carbon black where they bonded aluminum film and conductive fabric. The measurements of SE were carried out frequency range from 300MHz to 1.5GHz. It is observed that the SE of the bonded aluminum film and conductive fabric composites is the frequency dependent, increase with the increase in filler nano carbon black content. The aluminum film bonded composites showed higher SE compared to that of carbon black and conductive fabric. The aluminum film bonded epoxy composite was shown to exhibit up to 80dB of SE. The result that aluminum film bonded composite can be used for the purpose of EMI shielding as well as for some microwave applications.

  • PDF

Nano-Kenaf Cellulose Effects on Improved Mechanical Properties of Polypropylene Composite (나노 케냐프 셀룰로오스가 폴리프로필렌 복합소재의 물성 증가에 미치는 영향)

  • Oh, Jeong Seok;Lee, Seong-Hoon;Bumm, Sughun;Kim, Kwang-Jea
    • Polymer(Korea)
    • /
    • v.37 no.5
    • /
    • pp.613-617
    • /
    • 2013
  • The effects of nano size kenaf cellulose fiber on mechanical property of polypropylene (PP) composite were investigated. The addition of nano-kenaf in place of natural kenaf showed higher tensile strength, flexural strength, impact strength, and heat deflection temperature compared to the natural kenaf filled PP composite, while it shows lower melt flow index, elongation%, and flexural modulus. These seemed to be due to the increased surface area of nano-kenaf fiber contacting PP matrix and reduced impurities such as volatile extractives on the fiber surface.

Dense Polycrystalline SiC Fiber Derived from Aluminum-doped Polycarbosilane by One-Pot Synthesis (One-Pot 합성공정으로 만든 Aluminum이 doping된 폴리카보실란으로부터 제조된 치밀한 결정화 탄화규소 섬유)

  • Shin, Dong-Geun;Kong, Eun-Bae;Riu, Doh-Hyung;Kim, Young-Hee;Park, Hong-Sik;Kim, Hyoun-Ee
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.7
    • /
    • pp.393-402
    • /
    • 2007
  • Polyaluminocarbosilane was synthesized by direct reaction of polydimethylsilane with aluminum(III)-acetylacetonate in the presence of zeolite catalyst. A fraction of higher molecular weight polycarbosilane was formed due to the binding of aluminium acetylacetonate radicals with the polycarbosilane backbone. Small amount of Si-O-Si bond was observed in the as-prepared polyaluminocarbosilane as the result. Polyaluminocarbosilane fiber was obtained through a melt spinning and was pyrolyzed and sintered into SiC fiber from $1200{\sim}2000^{\circ}C$ under a controlled atmosphere. The nucleation and growth of ${\beta}-SiC$ grains between $1400{\sim}1600^{\circ}C$ are accompanied with nano pores formation and residual carbon generation. Above $1800^{\circ}C$, SiC fiber could be sintered to give a fully crystallized ${\beta}-SiC$ with some ${\alpha}-SiC$.