• Title/Summary/Keyword: nano degree

Search Result 205, Processing Time 0.037 seconds

Research a Person's Eyesight Changes on According to the Optimum Color Temperature for the Stand Lamp Using White Light LED Sources (백색광 LED를 사용한 독서등의 최적 색온도에 따른 사람의 시력 변화 연구)

  • Kim, Juhyun;Chang, Wonbeom;Lee, Seokhwan;Jung, Kwangkyo;Kim, Donghyun;Kim, Jeongmi;Ryu, Jaejun;Moon, Seongdeuk;Lee, Seunghyun;Ko, Youngsu;Huh, San;Jang, Mina;Jung, Changho;Chang, Jiho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.1
    • /
    • pp.80-82
    • /
    • 2013
  • White light emitting diode (LED) determined the most appropriate color temperature in reading lighting evaluated fatigue degree of eye according to color temperature. The eye fatigue degrees are determined by brightness and color temperature. Therefore, we measured the results of eyes test according to the change of color temperature and brightness. Experiments except for astigmatic corrected visual acuity of 0.8 more and age 20 to 25 years old, male and female college students was conducted in 100 patients. And constant illumination conditions, visual acuity was measured by varying the color temperature. The optometry at 10 minutes in the darkroom adapted eye. And then the temperature of $25{\pm}3$ degrees, the humidity was carried out at $50{\pm}5%$. As a result of typical color temperature of white light (5,600 K) has identification of the readability.

Improvement of Boar Semen Quality by Sperm Selection Using Magnetic Nano-particles (마그네틱 나노비드를 이용한 돼지 정자 품질의 향상)

  • Chung, KI-Hwa;Son, Jung-Ho
    • Journal of Life Science
    • /
    • v.26 no.8
    • /
    • pp.943-947
    • /
    • 2016
  • The objective of this study was to see if fairly simple magnetic nano-particle treatment enhances boar semen qualities. Boar semen samples were prepared from the swine AI center and samples were divided by 4 different motility groups (1, >90%; 2. 80~90%; 3. 70~80%; 4. <70%) using computer assisted sperm analysis (CASA) evaluation. Boar semen was extended using BTS extender and same number of magnetic nano-particles as total number of spermatozoa in each sample was treated for 20 min and collected for 5 min at room temperature. Sperm qualities such as motility and viability were evaluated by the CASA before and after treatment. Sperm abnormality and degree of agglutination were also evaluated under the microscopic examination before and after treatment. There were significant changes (p<0.05) on sperm motility from all 4 different groups in the average of 7.11% after treatment. The enhancement of sperm motility changes was more clear in the groups of lower sperm motile groups (<70% and 70~80%; 19.12±1.08% and 5.67±0.71%, p<0.05). The sperm motility character in terms of curvilinear velocity (VCL), straight line velocity (VSL), average path velocity (VAP) and linearity (LIN, %) showed also similar pattern but motility enhancement wear more clear in below 70% motile group. Average sperm viability was increased to 4% by magnetic nano-particles (p<0.05). The percentage of sperm abnormality was also reduced significantly (p<0.05) to the range of 3.7~4.5% before after treatment. The degree of sperm agglutination was also reduced in lower motility groups by the magnetic nano-particle purification.

Acoustic Emission Monitoring of Compression-after-Impact Test of Nano-Particles-Coated CFRP Damaged by Simulated Lightning Strikes (나노입자 코팅 CFRP의 모의 낙뢰 충격손상 후 압축시험에서의 음향방출 거동)

  • Shin, Jae-Ha;Kwon, Oh-Yang;Seo, Seong-Wook
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.1
    • /
    • pp.62-67
    • /
    • 2011
  • Nanoparticles-coated and impact-damaged carbon-fiber reinforced plastics(CFRP) laminates were tested under compression-after-impact(CAI) mode and the propagation of damage due to compressive loading has been monitored by acoustic emission(AE). The impact damage was induced not by mechanical loading but by a simulated lightning strike. CFRP laminates were made of carbon prepregs prepared by coating of conductive nano-particles directly on the fibers and the coupons were subjected to simulated lightning strikes with a high voltage/current impulse of 10~40 kA within a few microseconds. The effects of nano-particles coating and the degree of damage induced by the simulated lightning strikes on the AE activities were examined, and the relationship between the compressive residual strength and AE behavior has been evaluated in terms of AE event counts and the onset of AE activity with the compressive loading. The degree of impact damage was also measured in terms of damage area by using ultrasonic C-scan images. From the results assessed during the CAI tests of damaged CFRP showed that AE monitoring appeared to be very useful to differentiate the degree of damage hence the mechanical integrity of composite structures damaged by lightning strikes.

Ordering Structures of B-Site Cations in Pb(${Mg_{1/3}}{Nb_{2/3}}$)$O_3$-Based Solid Solutions (Pb(${Mg_{1/3}}{Nb_{2/3}}$)$O_3$계 고용체의 B자리 양이온 질서배열구조)

  • 차석배;김병국;제해준
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.5
    • /
    • pp.491-496
    • /
    • 2000
  • Single phae Pb(Mg1/3Nb2/3)O3-based solid solutions, the Mg2+ of which are replaced by 20mol% of Ni2+, Zn2+, Cd2+, and the Pb2+ of which are replaced by 0∼20 mol% of La3+, were synthesized and their ordering structures of B-site cations were investigated by XRD and TEM. The B'-site cations (Mg2+, Ni2+, Zn2+, Cd2+) are disordered while these B'-site cations and the B"-site cations (Nb5+) are nonstoichiometrically 1:1 ordered within the ordered nano-domains dispersed in the Nb5+-rich disordered matrix. The charge imbalance between the B'-rich ordered nano-domains and the B"-rich disordered matrix are compensated by the doping of electron donor such as La3+, which enhances the degree of nonstoichiometric 1:1 ordering. For a given La3+ content, the degree of nonstoichiometric 1:1 ordering increases as the average ionic size difference between the B'-and B"-site cations increases, Ni2+

  • PDF

Growth of Nano- and Microstructured Indium Nitride Crystals by the Reaction of Indium Oxide with Ammonia

  • Jung, Woo-Sik;Ra, Choon-Sup;Min, Bong-Ki
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.9
    • /
    • pp.1354-1358
    • /
    • 2005
  • Nano- and microstructured indium nitride crystals were synthesized by the reaction of indium oxide ($In_2O_3$) powder and its pellet with ammonia in the temperature range 580-700 ${^{\circ}C}$. The degree of nitridation of $In_2O_3$ to InN was very sensitive to the nitridation temperature. The formation of zero- to three-dimensional structured InN crystals demonstrated that $In_2O_3$ is nitridated to InN via two dominant parallel routes (solid ($In_2O_3$)-to-solid (InN) and gas ($In_2O$)-to-solid (InN)). The growth of InN crystals with such various morphologies was explained by the vapor-solid (VS) mechanism where the degree of supersaturation of In vapor determines the growth morphology and the vapor was mainly by the reaction of $In_2O$ with ammonia and partially by sublimation of solid InN. The pellet method was proven to be useful to obtain homogeneous InN nanowires.

Toxicity of Two Different Sized Lanthanum Oxides in Cultured Cells and Sprague-Dawley Rats

  • Lim, Cheol-Hong
    • Toxicological Research
    • /
    • v.31 no.2
    • /
    • pp.181-189
    • /
    • 2015
  • In recent years, the use of both nano- and micro-sized lanthanum has been increasing in the production of optical glasses, batteries, alloys, etc. However, a hazard assessment has not been performed to determine the degree of toxicity of lanthanum. Therefore, the purpose of this study was to identify the toxicity of both nano- and micro-sized lanthanum oxide in cultured cells and rats. After identifying the size and the morphology of lanthanum oxides, the toxicity of two different sized lanthanum oxides was compared in cultured RAW264.7 cells and A549 cells. The toxicity of the lanthanum oxides was also analyzed using rats. The half maximal inhibitory concentrations of micro-$La_2O_3$ in the RAW264.7 cells, with and without sonication, were 17.3 and 12.7 times higher than those of nano-$La_2O_3$, respectively. Similar to the RAW264.7 cells, the toxicity of nano-$La_2O_3$ was stronger than that of micro-$La_2O_3$ in the A549 cells. We found that nano-$La_2O_3$ was absorbed in the lungs more and was eliminated more slowly than micro-$La_2O_3$. At a dosage that did not affect the body weight, numbers of leukocytes, and concentrations of lactate dehydrogenase and albumin in the bronchoalveolar lavage (BAL) fluids, the weight of the lungs increased. Inflammatory effects on BAL decreased over time, but lung weight increased and the proteinosis of the lung became severe over time. The effects of particle size on the toxicity of lanthanum oxides in rats were less than in the cultured cells. In conclusion, smaller lanthanum oxides were more toxic in the cultured cells, and sonication decreased their size and increased their toxicity. The smaller-sized lanthanum was absorbed more into the lungs and caused more toxicity in the lungs. The histopathological symptoms caused by lanthanum oxide in the lungs did not go away and continued to worsen until 13 weeks after the initial exposure.

Design of PCB Embedded Balanced-to-unbalanced WiMax Duplexer Using Coupled LC Resonators (WiMAX 응용을 위한 결합 공진기 기반의 PCB 내장형 평형신호 듀플렉서의 설계)

  • Park, Ju-Y.;Park, Jong-C.;Park, Jae-Y.
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1587_1588
    • /
    • 2009
  • In this paper, PCB embedded balanced-to-unbalamced duplexer using coupled LC resonator was introduced for low cost dualband WiMax front-end-module application. In order to obtain the function of bandpass filter and balun transformer, proposed duplexer was configured by using magnetically coupled LC resonator. Out-of-band suppression was enhanced by applying two m-Derived transform circuits to obtain transmission zeros at 2GHz and 4.8GHz. In order to reduce the size of embedded duplexer, BaSrTiO3 (BST) composite high Dk RCC film was applied to improve the capacitance density. This high Dk film provided the capacitance density of 12.2 pF/mm2. The simulation results shows that fabricated duplexer had an insertion loss of 2.9dB and 5.5dB and return loss of 15dB and 16dB for 2.5GHz~2.6GHz and 3.5GHz~3.6GHz, respectively. The maximum magnitude and phase imbalance were 0.01dB and 0.17dB, and 1degree and 2degree in its passband, respectively. The out-of-band suppression was observed approximately 29dB and 40dB below 1.9GHz and over 4.5GHz, respectively. It has a volume of 6 mm $\times$ 7 mm $\times$ 0.7 mm (height).

  • PDF

Highly Reliable Solder ACFs FOB (Flex-on-Board) Interconnection Using Ultrasonic Bonding

  • Kim, Yoo-Sun;Zhang, Shuye;Paik, Kyung-Wook
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.1
    • /
    • pp.35-41
    • /
    • 2015
  • In this study, in order to improve the reliability of ACF interconnections, solder ACF joints were investigated interms of solder joint morphology and solder wetting areas, and evaluated the electrical properties of Flex-on-Board (FOB) interconncections. Solder ACF joints with the ultrasonic bonding method showed excellent solder wetting by broken solder oxide layers on solder surfaces compared with solder joints with remaining solder oxide layer bonded by the conventional thermo-compression (TC) bonding method. When higher target temperature was used, Sn58Bi solder joints showed concave shape due to lower degree of cure of resin at solder MP by higher heating rate. ACFs with epoxy resins and SAC305 solders showed lower degree of resin cure at solder MP due to the slow curing rate resulting in concave shaped solder joints. In terms of solder wetting area, solder ACFs with $25-32{\mu}m$ diameters and 30-40 wt% showed highest wetted solder areas. Solder ACF joints with the concave shape and the highest wetting area showed lower contact resistances and higher reliability in PCT results than conventional ACF joints. These results indicate that solder morphologies and wetting areas of solder ACF joints can be controlled by adjustment of bonding conditions and material properties of solder and polymer resin to improve reliability of ACF joints.

Effect of Nano-sized Carbon Black Particles on Lung and Circulatory System by Inhalation Exposure in Rats

  • Kim, Jong-Kyu;Kang, Min-Gu;Cho, Hae-Won;Han, Jeong-Hee;Chung, Yong-Hyun;Rim, Kyung-Taek;Yang, Jeong-Sun;Kim, Hwa;Lee, Moo-Yeol
    • Safety and Health at Work
    • /
    • v.2 no.3
    • /
    • pp.282-289
    • /
    • 2011
  • Objectives: We sought to establish a novel method to generate nano-sized carbon black particles (nano-CBPs) with an average size smaller than 100 nm for examining the inhalation exposure risks of experimental rats. We also tested the effect of nano-CBPs on the pulmonary and circulatory systems. Methods: We used chemical vapor deposition (CVD) without the addition of any additives to generate nano-CBPs with a particle size (electrical mobility diameter) of less than 100nm to examine the effects of inhalation exposure. Nano-CBPs were applied to a nose-only inhalation chamber system for studying the inhalation toxicity in rats. The effect on the lungs and circulatory system was determined according to the degree of inflammation as quantified by bronchoalveolar lavage fluid (BALF). The functional alteration of the hemostatic and vasomotor activities was measured by plasma coagulation, platelet activity, contraction and relaxation of blood vessels. Results: Nano-CBPs were generated in the range of 83.3-87.9 nm. Rats were exposed for 4 hour/day, 5 days/week for 4 weeks to $4.2{\times}10^6$, $6.2{\times}10^5$, and $1.3{\times}10^5$ particles/$cm^3$. Exposure of nano-CBPs by inhalation resulted in minimal pulmonary inflammation and did not appear to damage the lung tissue. In addition, there was no significant effect on blood functions, such as plasma coagulation and platelet aggregation, or on vasomotor function. Conclusion: We successfully generated nano-CBPs in the range of 83.3-87.9 nm at a maximum concentration of $4.2{\times}10^6$ particles/$cm^3$ in a nose-only inhalation chamber system. This reliable method can be useful to investigate the biological and toxicological effects of inhalation exposure to nano-CBPs on experimental rats.

Single-walled Hollow Nano-tubes and Nano-balls Assembled from the Aluminogermanante Precursors (Aluminogermanate Precursor의 자기조합(Self-assembly)을 통한 단일 벽을 갖는 나노-볼형 및 나노-튜브형 광물 유도)

  • Song, Yun-Goo;Bac, Bui Hoang;Lee, Young-Boo
    • Economic and Environmental Geology
    • /
    • v.42 no.5
    • /
    • pp.501-507
    • /
    • 2009
  • Ordered single-walled hollow aluminogermanate (ALGE) nano-balls(NBs) and nano-tubes(NTs) have been self-assembled from the ALGE precursors having an Al/Ge ratio of 1.33 using simple pH-control. The hollow ALGE NBs with average monodisperse diameters of 5 nm and chemistry of Al/Ge=1.5~1.6 were formed through structural assembly in the ALGE solution (Al/Ge=1.33) highly basified to pH=13(Na/Al=28~30) and followed by immediate acidification to pH=9. When the basified solution(pH=13) were acidified to pH=4, ALGE S-NTs (Short-fiber nano-tubes) with diameters of 3.3 nm, 15~20 nm in length, and chemistry of Al/Ge=2.6~2.8 were successfully synthesized. Whereas the solution was basified to pH=9, and subsequently acidified to pH=4, L-NTs(Long-fiber nano-tubes) with >100 nm in length were synthesized for the first time. The self-assembly of the hollow NBs, S-NTs, and L-NTs form the ALGE precursors can be explained by the degree of $H^+$-dissociation of the -Ge-OH inner surfaces, which was controlled by amount of $Na^+$ and pH conditions of ALGE precursor solutions. This results indicate that target forms of ALGE nanomaterials can be synthesized by simple pH controls.