Browse > Article
http://dx.doi.org/10.5012/bkcs.2005.26.9.1354

Growth of Nano- and Microstructured Indium Nitride Crystals by the Reaction of Indium Oxide with Ammonia  

Jung, Woo-Sik (School of Chemical Engineering and Technology, College of Engineering, Yeungnam University)
Ra, Choon-Sup (Department of Chemistry and Institute of Natural Science, Yeungnam University)
Min, Bong-Ki (Instrumental Analysis Center, Yeungnam University)
Publication Information
Abstract
Nano- and microstructured indium nitride crystals were synthesized by the reaction of indium oxide ($In_2O_3$) powder and its pellet with ammonia in the temperature range 580-700 ${^{\circ}C}$. The degree of nitridation of $In_2O_3$ to InN was very sensitive to the nitridation temperature. The formation of zero- to three-dimensional structured InN crystals demonstrated that $In_2O_3$ is nitridated to InN via two dominant parallel routes (solid ($In_2O_3$)-to-solid (InN) and gas ($In_2O$)-to-solid (InN)). The growth of InN crystals with such various morphologies was explained by the vapor-solid (VS) mechanism where the degree of supersaturation of In vapor determines the growth morphology and the vapor was mainly by the reaction of $In_2O$ with ammonia and partially by sublimation of solid InN. The pellet method was proven to be useful to obtain homogeneous InN nanowires.
Keywords
Indium nitride; Indium oxide; Nanowires; Growth mechanism; VS mechanism;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 3  (Related Records In Web of Science)
Times Cited By SCOPUS : 3
연도 인용수 순위
1 Strite, S.; Morkoç, H. J. Vac. Sci. Technol. 1992, B10, 1237
2 Parala, H.; Devi, A.; Hipler, F.; Maile, E.; Birkner, A.; Becker, H. W.; Fisher, R. A. J. Crystal Growth 2001, 231, 68   DOI   ScienceOn
3 Schwenzer, B.; Loeffler, L.; Seshadri, R.; Keller, S.; Lange, F. F.; DenBaars, S. P.; Mishra, U. K. J. Mater. Chem. 2004, 14, 637   DOI   ScienceOn
4 Tang, T.; Han, S.; Jin, W.; Liu, X.; Li, C.; Zhang, D.; Zhou, C.; Chen, B.; Han, J.; Meyyapan, M. J. Mater. Res. 2004, 19, 423   DOI   ScienceOn
5 Yin, L.-W.; Bando, Y.; Golberg, D.; Li, M.-S. Adv. Mater. 2004, 16, 1833   DOI   ScienceOn
6 Krukowski, S.; Witek, A.; Adamczyk, J.; Jun, J.; Bockowski, M.; Grzegory, I.; Lucznik, B.; Nowak, G.; Wrobleski, M.; Presz, A.; Gierlotka, S.; Stelmach, S.; Palosz, B.; Porowski, S.; Zinn, P. J. Phys. Chem. Solids 1998, 59, 289   DOI   ScienceOn
7 Xiao, J.; Xie, Y.; Luo, W. Inorg. Chem. 2003, 42, 107   DOI   ScienceOn
8 Bhuiyan, A. B.; Hashimoto, A.; Yamamoto, A. J. Appl. Phys. 2003, 94, 2779   DOI   ScienceOn
9 Bai, Y.-J.; Liu, Z.-G.; Xu, X.-G.; Cui, D.-L.; Hao, X.-P.; Feng, X.; Wang, Q.-L. J. Crystal Growth 2002, 241, 189   DOI   ScienceOn
10 Gao, L.; Zhang, Q.; Li, J. J. Mater. Chem. 2003, 13, 154   DOI   ScienceOn
11 Dingman, S. D.; Rath, N. P.; Markowitz, P. D.; Gibbons, P. C.; Buhro, W. E. Angew. Chem. Int. Ed. 2000, 39, 1470   DOI   ScienceOn
12 Zhang, J.; Zhang, L.; Peng, X.; Wang, X. J. Mater. Chem. 2002, 12, 802   DOI   ScienceOn
13 Liang, C. H.; Chen, L. C.; Hwang, J. S.; Chen, K. H.; Hung, Y. T.; Chen, Y. F. Appl. Phys. Lett. 2002, 81, 22   DOI   ScienceOn
14 Jung, W.-S. Bull. Korean Chem. Soc. 2004, 25, 51   DOI   ScienceOn
15 Lan, Z. H.; Wang, W. M.; Sun, C. L.; Shi, S. C.; Hsu, C. W.; Chen, T. T.; Chen, K. H.; Chen, C. C.; Chen, Y. F.; Chen, L. C. J. Crystal Growth 2004, 269, 87   DOI   ScienceOn
16 Campbell, W. B. Whisker Technology; Wiley-Interscience: New York, 1970; Chap. 2
17 Kato, A.; Tamari, N. J. Crystal Growth 1979, 49, 199
18 Hinchcliffe, A. J.; Ogden, J. S. J. Phys. Chem. 1973, 77, 1973