• Title/Summary/Keyword: nano composites

Search Result 648, Processing Time 0.023 seconds

Measurement of Tensile and Bending Properties of Nanohoneycomb Structures (나노허니컴 구조물의 인장 및 굽힘 물성 측정)

  • Jeon, Ji-Hoon;Choi, Duk-Hyun;Lee, Pyung-Soo;Lee, Kun-Hong;Park, Hyun-Chul;Hwang, Woon-Bong
    • Composites Research
    • /
    • v.19 no.6
    • /
    • pp.23-31
    • /
    • 2006
  • We measured mechanical properties, including Young's modulus, effective bending modulus and nominal fracture strength of nanohoneycomb structures using an Atomic Force Microscope(AFM) and a Nano-Universal Testing Machine(UTM). Anodic aluminum oxide(AAO) films are well suited as nanohoneycomb structures because of the simple fabrication process, high aspect ratio, self-ordered hexagonal pore structure, and simple control of pore dimensions. Bending tests were carried out for cantilever structures by pressing AFM tips, and the results were compared with three-point bending tests and tensile tests using a Nano-UTM. One side of the AAO films is clogged by harrier layers, and looks like a face material of conventional sandwich structures. Analysis of this layer showed that it did not influence the bending rigidity, and was just a crack tip. The present results can act as a design guideline in applications of nanohoneycomb structures.

Synthesis and Electrochemical Characteristics of Mesoporous Silicon/Carbon/CNF Composite Anode (메조기공 Silicon/Carbon/CNF 음극소재 제조 및 전기화학적 특성)

  • Park, Ji Yong;Jung, Min Zy;Lee, Jong Dae
    • Applied Chemistry for Engineering
    • /
    • v.26 no.5
    • /
    • pp.543-548
    • /
    • 2015
  • Si/C/CNF composites as anode materials for lithium-ion batteries were examined to improve the capacity and cycle performance. Si/C/CNF composites were prepared by the fabrication process including the synthesis and magnesiothermic reduction of SBA-15 to obtain Si/MgO by ball milling and the carbonization of phenol resin with CNF and HCl etching. Prepared Si/C/CNF composites were then analysed by BET, XRD, FE-SEM and TGA. Among SBA-15 samples synthesized at reaction temperatures between 50 and $70^{\circ}C$, the SBA-15 at $60^{\circ}C$ showed the largest specific surface area. Also the electrochemical performances of Si/C/CNF composites as an anode electrode were investigated by constant current charge/discharge test, cyclic voltammetry and impedance tests in the electrolyte of LiPF6 dissolved in mixed organic solvents (EC : DMC : EMC = 1 : 1 : 1 vol%). The coin cell using Si/C/CNF composites (Si : CNF = 97 : 3 in weight) showed better capacity (1,947 mAh/g) than that of other composition coin cells. The capacity retention ratio decreased from 84% (Si : CNF = 97 : 3 in weight) to 77% (Si : CNF = 89 : 11 in weight). It was found that the Si/C/CNF composite electrode shows an improved cycling performance and electric conductivity.

High Strength Nanostructured Metastable Alloys

  • Eckert, Jurgen;Bartusch, Birgit;Schurack, Frank;He, Guo;Schultz, Ludwig
    • Journal of Powder Materials
    • /
    • v.9 no.6
    • /
    • pp.394-408
    • /
    • 2002
  • Nanostructured high strength metastable Al-, Mg- and Ti-based alloys containing different amorphous, quasicrystalline and nanocrystalline phases are synthesized by non-equilibrium processing techniques. Such alloys can be prepared by quenching from the melt or by powder metallurgy techniques. This paper focuses on one hand on mechanically alloyed and ball milled powders containing different volume fractions of amorphous or nano-(quasi)crystalline phases, consolidated bulk specimens and, on the other hand. on cast specimens containing different constituent phases with different length-scale. As one example. $Mg_{55}Y_{15}Cu_{30}$- based metallic glass matrix composites are produced by mechanical alloying of elemental powder mixtures containing up to 30 vol.% $Y_2O_3$ particles. The comparison with the particle-free metallic glass reveals that the nanosized second phase oxide particles do not significantly affect the glass-forming ability upon mechanical alloying despite some limited particle dissolution. A supercooled liquid region with an extension of about 50 K can be maintained in the presence of the oxides. The distinct viscosity decrease in the supercooled liquid regime allows to consolidate the powders into bulk samples by uniaxial hot pressing. The $Y_2O_3$ additions increase the mechanical strength of the composites compared to the $Mg_{55}Y_{15}Cu_{30}$ metallic glass. The second example deals with Al-Mn-Ce and Al-Cu-Fe composites with quasicrystalline particles as reinforcements, which are prepared by quenching from the melt and by powder metallurgy. $Al_{98-x}Mn_xCe_2$ (x =5,6,7) melt-spun ribbons containing a major quasicrystalline phase coexisting with an Al-matrix on a nanometer scale are pulverized by ball milling. The powders are consolidated by hot extrusion. Grain growth during consolidation causes the formation of a micrometer-scale microstructure. Mechanical alloying of $Al_{63}Cu_{25}Fe_{12}$ leads to single-phase quasicrystalline powders. which are blended with different volume fractions of pure Al-powder and hot extruded forming $Al_{100-x}$$(Al_{0.63}Cu_{0.25}Fe_{0.12})_x$ (x = 40,50,60,80) micrometer-scale composites. Compression test data reveal a high yield strength of ${\sigma}_y{\geq}$700 MPa and a ductility of ${\varepsilon}_{pl}{\geq}$5% for than the Al-Mn-Ce bulk samples. The strength level of the Al-Cu-Fe alloys is ${\sigma}_y{\leq}$550 MPa significantly lower. By the addition of different amounts of aluminum, the mechanical properties can be tuned to a wide range. Finally, a bulk metallic glass-forming Ti-Cu-Ni-Sn alloy with in situ formed composite microstructure prepared by both centrifugal and injection casting presents more than 6% plastic strain under compressive stress at room temperature. The in situ formed composite contains dendritic hcp Ti solid solution precipitates and a few $Ti_3Sn,\;{\beta}$-(Cu, Sn) grains dispersed in a glassy matrix. The composite micro- structure can avoid the development of the highly localized shear bands typical for the room temperature defor-mation of monolithic glasses. Instead, widely developed shear bands with evident protuberance are observed. resulting in significant yielding and homogeneous plastic deformation over the entire sample.

Effect of Wrapping Treatment on the Dispersion of MWNT in CNT/ABS/SAN Composites (CNT/ABS/SAN계의 분산성에 미치는 MWNT Wrapping 전처리 효과)

  • Kim, Sung Tae;Park, Hae Youn;No, Tae Kyeong;Kang, Dong Gug;Jeon, Il Ryeon;Seo, Kwan Ho
    • Applied Chemistry for Engineering
    • /
    • v.23 no.4
    • /
    • pp.372-376
    • /
    • 2012
  • Carbon nanotubes (CNT) are considered as one of ideal nano-fillers in the field of composites with their excellent electrical, mechanical, and thermal properties. Therefore CNT composites are increasingly used in fabricating conductive materials, structural materials with high strength and low weight, and multifunctional materials. The main problem of the CNT composites is difficulty in the dispersion of CNT in the polymer matrix. In this study multi-walled carbon nanotubes (MWNT) were pretreated by the physical process utilizing a wrapping method. After the pretreatment polymer/MWNT nanocomposites were prepared by melt processing. The effect of functionalization MWNT by wrapping with styrene acrylonitrile (SAN) on the mechanical and electrical properties of acrylonitrile butadiene styrene resin (ABS)/MWNT composites was studied by comparing the properties of ABS mixed with the neat MWNT. Electrical and mechanical properties of ABS/MWNT nanocomposites were studied as a function of the functionalization and content of MWNT. The tensile strength of the ABS/MWNT nanocomposites increased, but the impact strength decreased. The polymer wrapping in ABS system has little effect on the improvement of electrical properties.

Electrochemical Performance of Graphite/Silicon/Pitch Anode Composites Bonded with Graphite Surface PVP and Silica Amine Function Group (흑연 표면의 PVP와 실리카의 아민 작용기로 결합된 흑연/실리콘/피치 음극 복합소재의 전기화학적 성능)

  • Lee, Su Hyeon;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.57 no.1
    • /
    • pp.118-123
    • /
    • 2019
  • In this study, the electrochemical characteristics of Graphite/Silicon/Pitch anode composites were analyzed to improve the low theoretical capacity of graphite as a lithium ion battery. The Graphite/Silica composites were synthesized by bonding silica onto polyvinylpyrrolidone coated graphite. The surface of used silica was treated with (3-Aminopropyl)triethoxysilane(APTES). Graphite/Silicon/Pitch composites were prepared by carbonization of petroleum pitch, the fabrication processes including the magnesiothermic reduction of nano silica to obtain silicon and varying the mass ratio of silica. The Graphite/Silicon/Pitch composites were analysed by XRD, SEM and XRD. Also the electrochemical performances of Graphite/Silicon/Pitch composite as the anode of lithium ion battery were investigated by constant current charge/discharge, rate performance, cyclic voltammetry and electrochemical impedance tests in the electrolyte of $LiPF_6$ dissolved in organic solvents (EC:DMC:EMC=1:1:1 vol%). The Graphite/Silicon/Pitch anode composite (silica 28.5 in weight) has better capacity (537 mAh/g). The cycle performance has an excellent capacity retention to 30th cycle of 95% and the retention rate capability of 98% in 0.1 C/0.2 C.

Autohesion Behavior of Brominated-Isobutylene-Isoprene Gum Nanocomposites with Layered Clay (층상점토 충전 브롬화 이소부틸-이소프렌 검 나노복합체의 점착거동)

  • Mensah, Bismark;Kim, Sungjin;Lee, Dae Hak;Kim, Han Gil;Oh, Jong Gab;Nah, Changwoon
    • Elastomers and Composites
    • /
    • v.49 no.1
    • /
    • pp.43-52
    • /
    • 2014
  • The effect of nanoclay (Cloisite 20A) on the self-adhesion behavior of uncured brominated-isobutylene-isoprene rubber (BIIR) has been studied. The dispersion state of nanoclay into the rubber matrix was examined by SEM, TEM and XRD analysis. The thermal degradation behavior of the filled and unfilled samples was examined by TGA and improvement in the thermal stability of the nanocomposites occurred based on the weight loss (%) measurements. Also, addition of nanoclay enhanced the cohesive strength of the material by reinforcement action thereby reducing the degree of molecular diffusion across the interface of butyl rubber. However, the average depth of penetration of the inter-diffused chains was still adequate to form entanglement on either side of the interface, and thus offered greater resistance to peeling, resulting in high tack strength measurements. The improvement in tack strength was only achieved at critical nanoclay loading above 8 phr. Contact angle measurement was also made to examine the surface characteristics. There was no significant interfacial property change by employing the nanoclay.

Preparation and Characterization of Grafted Maleic Anhydride onto Polypropylene by Reactive Extrusion (반응 압출을 통한 PP-g-MA 제조 및 특성평가)

  • Kang, Dong-Jin;Lee, Sung-Hyo;Pal, Kaushik;Park, Chan-Young;Zhang, Zhen Xiu;Bang, Dae-Suk;Kim, Jin-Kuk
    • Polymer(Korea)
    • /
    • v.33 no.4
    • /
    • pp.358-363
    • /
    • 2009
  • Maleic anhydride-grafted polypropylene has been widely used to improve the interfacial interaction between the components in PP/polar polymer blends and PP/filler composites and to maximize the physical properties and thermal properties. In this paper. the maleic anhydride (MAH)-grafted polypropylene (co-PP) was fabricated through reactive extrusion process with di-cumyl peroxide (DCP) as an initiator. The grafting degree of MAH depending on the contents of DCP and MAH was investigated by FT-IR spectra and chemical titration. The grafting degree increased with increasing MAH concentration and also showed maximum value at 0.06 wt% of DCP concentration. Melt flow index (MFI) of the grafted copolymer was increased with increasing the contents of MAH. The DSC and TGA analysis data indicate the melting temperature and thermal degradation of PP depending on the grafting degree of MAH.

Role of Electron Acceptor-donor on Elemental Mercury Removal Using Nano-silver-plated Activated Carbons Complexes

  • Lee, Hyo In;Yim, Yoon-Ji;Bae, Kyong-Min;Park, Soo-Jin
    • Composites Research
    • /
    • v.31 no.2
    • /
    • pp.76-81
    • /
    • 2018
  • In this study, the elemental mercury removal behaviors of silver-plated porous carbons materials were investigated. The pore structures and total pore volumes of the hybrid materials were analyzed by $N_2$ adsorption/desorption analysis at 77 K. The pore structures and surface morphologies of the hybrid materials were characterized by XRD and SEM, respectively. The elemental mercury adsorption capacities of all silver-plated porous carbons hybrid materials were higher than those of the as-received samples, despite the fact that the specific surface areas and total pore volumes decreased with increasing metal loading time. It was found that silver nanoparticles showed excellent elemental mercury removal behaviors in carbonaceous hybrid materials.

Mechanical Properties of PMMA / Alumina Composites Fused by Heat Treatment (용융 열처리한 PMMA/Alumina 복합체의 기계 특성)

  • Kim, D.J.;Ryu, S.C.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.31 no.3
    • /
    • pp.120-125
    • /
    • 2018
  • The PMMA composited material mixed with alumina studied to find the optimal condition, the adequate ratio of mixing, for the associated mechanical properties such as anti-corrosive, weatherproof performance. The 80% of hardness and 52% of scratch coefficient improved according to increasing ratio of alumina, which is mostly 3 times higher than that of pure PMMA, on other hand 16% of tensile strength and 35% of flexural strength has lost while alumina was adding in. The most proper ratio, having the best availability in substantial production, of composite between pure PMMA and alumina is determined as 93 wt. % vs 7 wt. %. Results of related five properties had estimated by using of a pentagram.

A comparative study of grinding mill type on aluminium powders with carbon nano tube: traditional ball mill and planetary ball mill

  • Choe, Hui-Gyu;Choe, Gyeong-Pil;Bae, Dae-Hyeong;Lee, Seung-Baek;Lee, Ung;Kim, Seong-Su
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.27.2-27.2
    • /
    • 2009
  • Grinding characteristics for aluminium and carbon nanotubes (CNTs) powder during traditional and planetary ball milling investigated from the viewpoint of particle behaviour with the aimat developing CNT-dispersed samples ground based on powder metallurgy routes.In this work, a comparison between the pure aluminium and CNT input aluminium grinding was carried out to determine grinding time effect on size reduction.We observed that the use of the curly small-diameter multi-walled carbon nanotubes (MWCNTs) attributed to the beneficial role of the MWCNTs as grinding aids. It is suggested that careful choices of the sizes of CNTs and Al powders would allow fine-grinding of composite particles with uniformly distributed CNT reinforcements thereby ensuring improved properties of the final composites produced by low-temperature compacting.

  • PDF