• Title/Summary/Keyword: nano Ag

Search Result 344, Processing Time 0.03 seconds

Effect of Plasma Pretreatment on Superconformal Cu Alloy Gap-Filling of Nano-scale Trenches

  • Mun, Hak-Gi;Lee, Jeong-Hun;Lee, Su-Jin;Yun, Jae-Hong;Kim, Hyeong-Jun;Lee, Nae-Eung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.53-53
    • /
    • 2011
  • As the dimension of Cu interconnects has continued to reduce, its resistivity is expected to increase at the nanoscale due to increased surface and grain boundary scattering of electrons. To suppress increase of the resistivity in nanoscale interconnects, alloying Cu with other metal elements such as Al, Mn, and Ag is being considered to increase the mean free path of the drifting electrons. The formation of Al alloy with a slight amount of Cu broadly studied in the past. The study of Cu alloy including a very small Al fraction, by contrast, recently began. The formation of Cu-Al alloy is limited in wet chemical bath and was mainly conducted for fundamental studies by sputtering or evaporation system. However, these deposition methods have a limitation in production environment due to poor step coverage in nanoscale Cu metallization. In this work, gap-filling of Cu-Al alloy was conducted by cyclic MOCVD (metal organic chemical vapor deposition), followed by thermal annealing for alloying, which prevented an unwanted chemical reaction between Cu and Al precursors. To achieve filling the Cu-Al alloy into sub-100nm trench without overhang and void formation, furthermore, hydrogen plasma pretreatment of the trench pattern with Ru barrier layer was conducted in order to suppress of Cu nucleation and growth near the entrance area of the nano-scale trench by minimizing adsorption of metal precursors. As a result, superconformal gap-fill of Cu-Al alloy could be achieved successfully in the high aspect ration nanoscale trenches. Examined morphology, microstructure, chemical composition, and electrical properties of superfilled Cu-Al alloy will be discussed in detail.

  • PDF

Green synthesis of silver nanoparticles to the microbiological corrosion deterrence of oil and gas pipelines buried in the soil

  • Zhi Zhang;Jingguo Du;Tayebeh Mahmoudi
    • Advances in nano research
    • /
    • v.15 no.4
    • /
    • pp.355-366
    • /
    • 2023
  • Biological corrosion, a crucial aspect of metal degradation, has received limited attention despite its significance. It involves the deterioration of metals due to corrosion processes influenced by living organisms, including bacteria. Soil represents a substantial threat to pipeline corrosion as it contains chemical and microbial factors that cause severe damage to water, oil, and gas transmission projects. To combat fouling and corrosion, corrosion inhibitors are commonly used; however, their production often involves expensive and hazardous chemicals. Consequently, researchers are exploring natural and eco-friendly alternatives, specifically nano-sized products, as potent corrosion inhibitors. This study aims to environmentally synthesize silver nanoparticles using an extract from Lagoecia cuminoides L and evaluate their effectiveness in preventing biological corrosion of buried pipes in soil. The optimal experimental conditions were determined as follows: a volume of 4 ml for the extract, a volume of 4 ml for silver nitrate (AgNO3), pH 9, a duration of 60 minutes, and a temperature of 60 degrees Celsius. Analysis using transmission electron microscopy confirmed the formation of nanoparticles with an average size of approximately 28 nm, while X-ray diffraction patterns exhibited suitable peak intensities. By employing the Scherer equation, the average particle size was estimated to be around 30 nm. Furthermore, antibacterial studies revealed the potent antibacterial activity of the synthesized silver nanoparticles against both aerobic and anaerobic bacteria. This property effectively mitigates the biological corrosion caused by bacteria in steel pipes buried in soil.

Experimental and Numerical Study on Board Level Impact Test of SnPb and SnAgCu BGA Assembly Packaging (BGA Type 유.무연 솔더의 기계적 충격에 대한 보드레벨 신뢰성 평가)

  • Lim, Ji-Yeon;Jang, Dong-Young;Ahn, Hyo-Sok
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.4
    • /
    • pp.77-86
    • /
    • 2008
  • The reliability of leaded and lead-free solders of BGA type packages on a printed circuit board was investigated by employing the standard drop test and 4-point bending test. Tested solder joints were examined by optical microscopy to identify associated failure mode. Three-dimensional finite element analysis(FEM) with ANSYS Workbench v.11 was carried out to understand the mechanical behavior of solder joints under the influence of bending or drop impact. The results of numerical analysis are in good agreement with those obtained by experiments. Packages in the center of the PCB experienced higher stress than those in the perimeter of the PCB. The solder joints located in the outermost comer of the package suffered from higher stress than those located in center region. In both drop and bending impact tests, the lead-free solder showed better performances than the leaded solders. The numerical analysis results indicated that stress and strain behavior of solder joint were dependent on various effective parameters.

  • PDF

Flash Lamp Annealing of Ag Organometallic Ink for High-Performance Flexible Electrode (플래시 기반 유기금속화합물 열처리를 통한 고성능 유연 전극 제조)

  • Yu Mi Woo;Dong Gyu Lee;Yun Sik Hwang;Jae Chan Heo;SeongMin Jeong;Yong Jun Cho;Kwi-Il Park;Jung Hwan Park
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.5
    • /
    • pp.454-462
    • /
    • 2023
  • Flash lamp annealing (FLA) of metal nanoparticle (NP) ink has provided powerful strategies to fabricate high-performance electrodes on a flexible substrate because of its rapid processing capability (in milliseconds), low-temperature process, and compatibility with to roll-to-roll process. However, metal NPs [e.g., gold (Au), silver (Ag), copper (Cu), etc.] have limitations such as difficulty in synthesizing fine metal NPs (diameter less than 10 nm), high price, and degradation during ink storage and FLA processing. In this regard, organometallic ink has been proposed as a material that can replace metal NPs due to their low-cost (usually 1/100 times cheaper than metal nano inks), low-temperature processability, and high material stability. Despite these advantages, the fabrication of flexible electrodes through FLA treatment of organometallic compounds has not been extensively researched. In this paper, we experimentally guide how to determine the optimal conditions for forming electrodes on flexible substrates by considering material parameters, and flashlight processing parameters (energy density, pulse duration, etc) to minimize the difficulties that may arise during the FLA of organometallic ink.

Fabrication of Transparent Conductive Film for Flexible Devices Using High-Resolution Roll Imprinting (고 정밀 롤 임프린팅을 이용한 유연 전자소자용 투명전극 제작)

  • Yu, Jong-Su;Yu, Semin;Kwak, Sun-Woo;Kim, Jung Su
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.11
    • /
    • pp.975-979
    • /
    • 2014
  • Transparent conductive films (TCF) with excellent electrical properties and high mechanical flexibility have been widely studied because of their potential for application in optoelectronic devices such as light-emitting diodes, paper displays and organic solar cells. In this paper, we report on low-resistance and high-transparent TCF for flexible device applications. To fabricate a high-resolution roll imprinted TCF, the following steps were performed: the design and manufacture of an electroforming stamp mold, the fabrication of high-resolution roll imprinted on flexible film, the manufacture of Ag-nano paste which was filled into patterned film using a doctor blade process. Also, we was demonstrated with the successful application(ITO free organic photovoltaic) of the developed flexible TCF.

Fabrication of Flexible Solid-state Dye-sensitized $TiO_2$ Nanotube Solar Cell Using UV-curable NOA

  • Park, Ik-Jae;Park, Sang-Baek;Kim, Ju-Seong;Jin, Gyeong-Seok;Hong, Guk-Seon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.396-396
    • /
    • 2012
  • $TiO_2$ anatase nanotube arrays (NTAs) were grown by electrochemical anodization and followed annealing of Ti foil. Ethylene glycol/$NH_4F$-based organic electrolyte was used for electrolyte solution and using second anodization process to obtain free-standing NTAs. After obtaining NTAs, ITO film was deposited by sputtering process on bottom of NTAs. UV-curable NOA was used for attach free-standing NTAs on flexible plastic substrate (PEN). Solid state electrolyte (spiro-OMeTAD) was coated via spin-coating method on top of attached NTAs. Ag was deposited as a counter electrode. Under AM 1.5 simulated sunlight, optical characteristics of devices were investigated. In order to use flexible polymer substrate, processes have to be conducted at low temperature. In case of $TiO_2$ nano particles (NPs), however, crystallization of NPs at high temperature above $450^{\circ}C$ is required. Because NTAs were conducted high temperature annealing process before NTAs transfer to PEN, it is favorable for using PEN as flexible substrate. Fabricated flexible solid-state DSSCs make possible the preventing of liquid electrolyte corrosion and leakage, various application.

  • PDF

Synthesis and Characterization of Silver Nanofluid Using Pulsed Wire Evaporation Method in Liquid-Gas Mixture (액상/기상중 전기선 폭발법을 이용한 은 나노유체의 제조 및 특성평가에 관한 연구)

  • Kim, Chang-Kyu;Lee, Gyoung-Ja;Rhee, Chang-Kyu
    • Korean Journal of Materials Research
    • /
    • v.19 no.9
    • /
    • pp.468-472
    • /
    • 2009
  • The silver nanofluids were synthesized by the pulsed wire evaporation (PWE) method in a liquid-gas mixture. The size and microstructure of nanoparticles in the deionized water were investigated by a particle size analyzer (PSA), transmission electron microscope (TEM), and scanning electron microscope (SEM). Also, the synthesized nanofluids were investigated in order to assess the stability of dispersion of nanofluid by the zetapotential analyzer and dispersion stability analyzer. The results showed that the spherical silver nanoparticle formed in the deionized water and mean particle size was about 50 nm. Also, when explosion times were in the range of 20$\sim$200 times, the absolute value of zeta potential was less than -27 mV and the dispersion stability characteristic of low concentration silver nanofluid was better than the high concentration silver nanofluid by turbiscan.

The adhesion enhancements of Cu metal thin film on plastic substrate by plasma technology (고품질 Cu 박막 형성을 위한 폴리머 기판상 표면처리 기술 연구)

  • Byeon, Eun-Yeon;Choe, Du-Ho;Kim, Do-Geun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.148-148
    • /
    • 2016
  • 디스플레이 시장이 rigid에서 flexible로 변화하기 시작하면서 유연 투명전극 소재에 대한 수요가 증가하고 있다. 투명전극으로 대표되는 Indium Tin Oxide(ITO)는 고투과 저저항의 장점을 가지지만 유연성이 떨어져 이를 대체 할 투명전극 소재로 Metal mesh, Ag nano-wire, CNT, Graphene, Conductive polymer 등에 대한 응용 연구가 활발히 진행되고 있다. 본 연구에서는 Metal mesh 용 Cu thin film 형성을 위해 플라즈마 표면처리 기술로 플라스틱 기판과 Cu 박막 사이의 밀착력을 향상시키고자 공정 연구를 수행하였다. 고품질의 Cu thin film 제작을 위해 양산용 roll to roll 장비를 이용하였고, 선형이온소스를 적용하여 플라즈마 표면처리를 수행하였다. 이후 마그네트론 스퍼터링을 통해 Ni buffer layer 및 Cu 박막 증착 공정을 in-situ로 진행하였다. 이러한 공정을 통해 제작한 Cu thin film의 밀착력을 평가하기 위해 cross cut test(ASTM D3359)를 수행하였다. 그 결과 플라스틱 기판과 Cu 금속 박막 사이의 밀착력이 0B에서 5B까지 향상된 것을 확인하였고, 플라즈마 표면처리 공정을 통해서 저항 또한 감소되는 결과를 얻을 수 있었다. 본 연구를 통해 polyethylene terephthalate(PET)뿐만 아니라 polyimide(PI) 기판 상에서도 플라즈마 표면처리를 통해 금속 박막의 밀착력이 향상되는 결과를 확인하였으며, flexible copper clad laminate (FCCL) 같은 유연 정보 소자 분야에 응용 가능할 것으로 기대된다.

  • PDF

Copper micro/nanostructures as effective SERS active substrates for pathogen detection

  • Ankamwar, Balaprasad;Sur, Ujjal Kumar
    • Advances in nano research
    • /
    • v.9 no.2
    • /
    • pp.113-122
    • /
    • 2020
  • Surface-Enhanced Raman Scattering (SERS) spectroscopy is a multifaceted surface sensitive methodology which exploits spectroscopy-based analysis for various applications. This technique is based on the massive amplification of Raman signals which were feeble previously in order to use them for appropriate identification at qualitative and quantitative in chemical as well as biological systems. This novel powerful technique can be utilized to identify pathogens such as bacteria and viruses. As far as SERS is concerned, one of the most studied problems has been functionalization of SERS active substrate. Metal colloids and nanostructures or microstructures synthesized using noble metals such as Au, Ag and Cu are considered to be SERS active. Silver and gold are extensively used as SERS active substrates due to chemical inertness and stability in air compare to copper. However, use of Cu as a suitable alternative has been taken into account as it is cheap. Herein, we have synthesized air-stable copper microstructures/nanostructures by chemical, electrochemical and microwave-assisted methods. In this paper, we have also discussed the use of as synthesized copper micro/nanostructures as inexpensive yet effective SERS active substrates for the fast identification of micro-organisms like Staphylococcus aureus and Escherichia coli.

Improvement of Metallic Micro-Structure Precision Employing Two-photon Induced Photoreduction Process (이광자 흡수 광환원 공정을 이용한 마이크로 금속형상 제작의 정밀화에 관한 연구)

  • Son, Yong;Lim, Tae-Woo;Yang, Dong-Yol;Prem, Prabhakaran;Lee, Kwang-Sup
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.9
    • /
    • pp.754-760
    • /
    • 2008
  • A two-photon induced photoreduction process suggests a possibility for fabricating complicated metallic microstructures which can be applied to 3-D micro-circuits and optical devices, etc. The process employs the photoreduction of silver ions in a metallic solution which is composed of metallic salt ($AgNO_3$) and watersoluble polymer ((poly(4-styrenesulfonique acid) 18wt. % in $H_2O$, $(C_8H_8O_3S)_n$)). In this process, the improvement of the resolution and the uniformity of fabricated metallic structures are important issues. To address these problems, continuous forming window (CFW) is obtained from a parametric study on the conditions of laser power and scanning velocity and the direct seed generation (DSG) method is proposed. Silver nano particles are uniformly generated in a metallic solution through the DSG method, which enables the decrease of a laser power to trigger the photoreduction of silver ions as well as the increase of metal contents in a metallic solution. So the two-photon induced photoreduction property of a metallic solution is improved. Through this work, precise silver patterns are fabricated with a minimum line width of 400 nm.