• Title/Summary/Keyword: named data

Search Result 1,232, Processing Time 0.032 seconds

A Study on the Potential Use of ChatGPT in Public Design Policy Decision-Making (공공디자인 정책 결정에 ChatGPT의 활용 가능성에 관한연구)

  • Son, Dong Joo;Yoon, Myeong Han
    • Journal of Service Research and Studies
    • /
    • v.13 no.3
    • /
    • pp.172-189
    • /
    • 2023
  • This study investigated the potential contribution of ChatGPT, a massive language and information model, in the decision-making process of public design policies, focusing on the characteristics inherent to public design. Public design utilizes the principles and approaches of design to address societal issues and aims to improve public services. In order to formulate public design policies and plans, it is essential to base them on extensive data, including the general status of the area, population demographics, infrastructure, resources, safety, existing policies, legal regulations, landscape, spatial conditions, current state of public design, and regional issues. Therefore, public design is a field of design research that encompasses a vast amount of data and language. Considering the rapid advancements in artificial intelligence technology and the significance of public design, this study aims to explore how massive language and information models like ChatGPT can contribute to public design policies. Alongside, we reviewed the concepts and principles of public design, its role in policy development and implementation, and examined the overview and features of ChatGPT, including its application cases and preceding research to determine its utility in the decision-making process of public design policies. The study found that ChatGPT could offer substantial language information during the formulation of public design policies and assist in decision-making. In particular, ChatGPT proved useful in providing various perspectives and swiftly supplying information necessary for policy decisions. Additionally, the trend of utilizing artificial intelligence in government policy development was confirmed through various studies. However, the usage of ChatGPT also unveiled ethical, legal, and personal privacy issues. Notably, ethical dilemmas were raised, along with issues related to bias and fairness. To practically apply ChatGPT in the decision-making process of public design policies, first, it is necessary to enhance the capacities of policy developers and public design experts to a certain extent. Second, it is advisable to create a provisional regulation named 'Ordinance on the Use of AI in Policy' to continuously refine the utilization until legal adjustments are made. Currently, implementing these two strategies is deemed necessary. Consequently, employing massive language and information models like ChatGPT in the public design field, which harbors a vast amount of language, holds substantial value.

Optimization of Multiclass Support Vector Machine using Genetic Algorithm: Application to the Prediction of Corporate Credit Rating (유전자 알고리즘을 이용한 다분류 SVM의 최적화: 기업신용등급 예측에의 응용)

  • Ahn, Hyunchul
    • Information Systems Review
    • /
    • v.16 no.3
    • /
    • pp.161-177
    • /
    • 2014
  • Corporate credit rating assessment consists of complicated processes in which various factors describing a company are taken into consideration. Such assessment is known to be very expensive since domain experts should be employed to assess the ratings. As a result, the data-driven corporate credit rating prediction using statistical and artificial intelligence (AI) techniques has received considerable attention from researchers and practitioners. In particular, statistical methods such as multiple discriminant analysis (MDA) and multinomial logistic regression analysis (MLOGIT), and AI methods including case-based reasoning (CBR), artificial neural network (ANN), and multiclass support vector machine (MSVM) have been applied to corporate credit rating.2) Among them, MSVM has recently become popular because of its robustness and high prediction accuracy. In this study, we propose a novel optimized MSVM model, and appy it to corporate credit rating prediction in order to enhance the accuracy. Our model, named 'GAMSVM (Genetic Algorithm-optimized Multiclass Support Vector Machine),' is designed to simultaneously optimize the kernel parameters and the feature subset selection. Prior studies like Lorena and de Carvalho (2008), and Chatterjee (2013) show that proper kernel parameters may improve the performance of MSVMs. Also, the results from the studies such as Shieh and Yang (2008) and Chatterjee (2013) imply that appropriate feature selection may lead to higher prediction accuracy. Based on these prior studies, we propose to apply GAMSVM to corporate credit rating prediction. As a tool for optimizing the kernel parameters and the feature subset selection, we suggest genetic algorithm (GA). GA is known as an efficient and effective search method that attempts to simulate the biological evolution phenomenon. By applying genetic operations such as selection, crossover, and mutation, it is designed to gradually improve the search results. Especially, mutation operator prevents GA from falling into the local optima, thus we can find the globally optimal or near-optimal solution using it. GA has popularly been applied to search optimal parameters or feature subset selections of AI techniques including MSVM. With these reasons, we also adopt GA as an optimization tool. To empirically validate the usefulness of GAMSVM, we applied it to a real-world case of credit rating in Korea. Our application is in bond rating, which is the most frequently studied area of credit rating for specific debt issues or other financial obligations. The experimental dataset was collected from a large credit rating company in South Korea. It contained 39 financial ratios of 1,295 companies in the manufacturing industry, and their credit ratings. Using various statistical methods including the one-way ANOVA and the stepwise MDA, we selected 14 financial ratios as the candidate independent variables. The dependent variable, i.e. credit rating, was labeled as four classes: 1(A1); 2(A2); 3(A3); 4(B and C). 80 percent of total data for each class was used for training, and remaining 20 percent was used for validation. And, to overcome small sample size, we applied five-fold cross validation to our dataset. In order to examine the competitiveness of the proposed model, we also experimented several comparative models including MDA, MLOGIT, CBR, ANN and MSVM. In case of MSVM, we adopted One-Against-One (OAO) and DAGSVM (Directed Acyclic Graph SVM) approaches because they are known to be the most accurate approaches among various MSVM approaches. GAMSVM was implemented using LIBSVM-an open-source software, and Evolver 5.5-a commercial software enables GA. Other comparative models were experimented using various statistical and AI packages such as SPSS for Windows, Neuroshell, and Microsoft Excel VBA (Visual Basic for Applications). Experimental results showed that the proposed model-GAMSVM-outperformed all the competitive models. In addition, the model was found to use less independent variables, but to show higher accuracy. In our experiments, five variables such as X7 (total debt), X9 (sales per employee), X13 (years after founded), X15 (accumulated earning to total asset), and X39 (the index related to the cash flows from operating activity) were found to be the most important factors in predicting the corporate credit ratings. However, the values of the finally selected kernel parameters were found to be almost same among the data subsets. To examine whether the predictive performance of GAMSVM was significantly greater than those of other models, we used the McNemar test. As a result, we found that GAMSVM was better than MDA, MLOGIT, CBR, and ANN at the 1% significance level, and better than OAO and DAGSVM at the 5% significance level.

Emoticon by Emotions: The Development of an Emoticon Recommendation System Based on Consumer Emotions (Emoticon by Emotions: 소비자 감성 기반 이모티콘 추천 시스템 개발)

  • Kim, Keon-Woo;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.227-252
    • /
    • 2018
  • The evolution of instant communication has mirrored the development of the Internet and messenger applications are among the most representative manifestations of instant communication technologies. In messenger applications, senders use emoticons to supplement the emotions conveyed in the text of their messages. The fact that communication via messenger applications is not face-to-face makes it difficult for senders to communicate their emotions to message recipients. Emoticons have long been used as symbols that indicate the moods of speakers. However, at present, emoticon-use is evolving into a means of conveying the psychological states of consumers who want to express individual characteristics and personality quirks while communicating their emotions to others. The fact that companies like KakaoTalk, Line, Apple, etc. have begun conducting emoticon business and sales of related content are expected to gradually increase testifies to the significance of this phenomenon. Nevertheless, despite the development of emoticons themselves and the growth of the emoticon market, no suitable emoticon recommendation system has yet been developed. Even KakaoTalk, a messenger application that commands more than 90% of domestic market share in South Korea, just grouped in to popularity, most recent, or brief category. This means consumers face the inconvenience of constantly scrolling around to locate the emoticons they want. The creation of an emoticon recommendation system would improve consumer convenience and satisfaction and increase the sales revenue of companies the sell emoticons. To recommend appropriate emoticons, it is necessary to quantify the emotions that the consumer sees and emotions. Such quantification will enable us to analyze the characteristics and emotions felt by consumers who used similar emoticons, which, in turn, will facilitate our emoticon recommendations for consumers. One way to quantify emoticons use is metadata-ization. Metadata-ization is a means of structuring or organizing unstructured and semi-structured data to extract meaning. By structuring unstructured emoticon data through metadata-ization, we can easily classify emoticons based on the emotions consumers want to express. To determine emoticons' precise emotions, we had to consider sub-detail expressions-not only the seven common emotional adjectives but also the metaphorical expressions that appear only in South Korean proved by previous studies related to emotion focusing on the emoticon's characteristics. We therefore collected the sub-detail expressions of emotion based on the "Shape", "Color" and "Adumbration". Moreover, to design a highly accurate recommendation system, we considered both emotion-technical indexes and emoticon-emotional indexes. We then identified 14 features of emoticon-technical indexes and selected 36 emotional adjectives. The 36 emotional adjectives consisted of contrasting adjectives, which we reduced to 18, and we measured the 18 emotional adjectives using 40 emoticon sets randomly selected from the top-ranked emoticons in the KakaoTalk shop. We surveyed 277 consumers in their mid-twenties who had experience purchasing emoticons; we recruited them online and asked them to evaluate five different emoticon sets. After data acquisition, we conducted a factor analysis of emoticon-emotional factors. We extracted four factors that we named "Comic", Softness", "Modernity" and "Transparency". We analyzed both the relationship between indexes and consumer attitude and the relationship between emoticon-technical indexes and emoticon-emotional factors. Through this process, we confirmed that the emoticon-technical indexes did not directly affect consumer attitudes but had a mediating effect on consumer attitudes through emoticon-emotional factors. The results of the analysis revealed the mechanism consumers use to evaluate emoticons; the results also showed that consumers' emoticon-technical indexes affected emoticon-emotional factors and that the emoticon-emotional factors affected consumer satisfaction. We therefore designed the emoticon recommendation system using only four emoticon-emotional factors; we created a recommendation method to calculate the Euclidean distance from each factors' emotion. In an attempt to increase the accuracy of the emoticon recommendation system, we compared the emotional patterns of selected emoticons with the recommended emoticons. The emotional patterns corresponded in principle. We verified the emoticon recommendation system by testing prediction accuracy; the predictions were 81.02% accurate in the first result, 76.64% accurate in the second, and 81.63% accurate in the third. This study developed a methodology that can be used in various fields academically and practically. We expect that the novel emoticon recommendation system we designed will increase emoticon sales for companies who conduct business in this domain and make consumer experiences more convenient. In addition, this study served as an important first step in the development of an intelligent emoticon recommendation system. The emotional factors proposed in this study could be collected in an emotional library that could serve as an emotion index for evaluation when new emoticons are released. Moreover, by combining the accumulated emotional library with company sales data, sales information, and consumer data, companies could develop hybrid recommendation systems that would bolster convenience for consumers and serve as intellectual assets that companies could strategically deploy.

Enhancing Predictive Accuracy of Collaborative Filtering Algorithms using the Network Analysis of Trust Relationship among Users (사용자 간 신뢰관계 네트워크 분석을 활용한 협업 필터링 알고리즘의 예측 정확도 개선)

  • Choi, Seulbi;Kwahk, Kee-Young;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.3
    • /
    • pp.113-127
    • /
    • 2016
  • Among the techniques for recommendation, collaborative filtering (CF) is commonly recognized to be the most effective for implementing recommender systems. Until now, CF has been popularly studied and adopted in both academic and real-world applications. The basic idea of CF is to create recommendation results by finding correlations between users of a recommendation system. CF system compares users based on how similar they are, and recommend products to users by using other like-minded people's results of evaluation for each product. Thus, it is very important to compute evaluation similarities among users in CF because the recommendation quality depends on it. Typical CF uses user's explicit numeric ratings of items (i.e. quantitative information) when computing the similarities among users in CF. In other words, user's numeric ratings have been a sole source of user preference information in traditional CF. However, user ratings are unable to fully reflect user's actual preferences from time to time. According to several studies, users may more actively accommodate recommendation of reliable others when purchasing goods. Thus, trust relationship can be regarded as the informative source for identifying user's preference with accuracy. Under this background, we propose a new hybrid recommender system that fuses CF and social network analysis (SNA). The proposed system adopts the recommendation algorithm that additionally reflect the result analyzed by SNA. In detail, our proposed system is based on conventional memory-based CF, but it is designed to use both user's numeric ratings and trust relationship information between users when calculating user similarities. For this, our system creates and uses not only user-item rating matrix, but also user-to-user trust network. As the methods for calculating user similarity between users, we proposed two alternatives - one is algorithm calculating the degree of similarity between users by utilizing in-degree and out-degree centrality, which are the indices representing the central location in the social network. We named these approaches as 'Trust CF - All' and 'Trust CF - Conditional'. The other alternative is the algorithm reflecting a neighbor's score higher when a target user trusts the neighbor directly or indirectly. The direct or indirect trust relationship can be identified by searching trust network of users. In this study, we call this approach 'Trust CF - Search'. To validate the applicability of the proposed system, we used experimental data provided by LibRec that crawled from the entire FilmTrust website. It consists of ratings of movies and trust relationship network indicating who to trust between users. The experimental system was implemented using Microsoft Visual Basic for Applications (VBA) and UCINET 6. To examine the effectiveness of the proposed system, we compared the performance of our proposed method with one of conventional CF system. The performances of recommender system were evaluated by using average MAE (mean absolute error). The analysis results confirmed that in case of applying without conditions the in-degree centrality index of trusted network of users(i.e. Trust CF - All), the accuracy (MAE = 0.565134) was lower than conventional CF (MAE = 0.564966). And, in case of applying the in-degree centrality index only to the users with the out-degree centrality above a certain threshold value(i.e. Trust CF - Conditional), the proposed system improved the accuracy a little (MAE = 0.564909) compared to traditional CF. However, the algorithm searching based on the trusted network of users (i.e. Trust CF - Search) was found to show the best performance (MAE = 0.564846). And the result from paired samples t-test presented that Trust CF - Search outperformed conventional CF with 10% statistical significance level. Our study sheds a light on the application of user's trust relationship network information for facilitating electronic commerce by recommending proper items to users.

Voluntary Motor Control Change after Gait Training in Patients with Spinal Cord Injury (척수신경손상 환자의 보행훈련 전.후의 능동적 근육제어의 변화)

  • 임현균;이동철;이영신;셔우드아더
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.133-140
    • /
    • 2003
  • In this study, muscle activity was measured using surface EMG (sEMG) during a voluntary maneuver (ankle dorsiflexion) in the supine position was compared pre and post gait training. Nine patients with incomplete spinal cord injury participated in a supported treadmill ambulation training (STAT), twenty minutes a day, five days a week for three months. Two tests, a gait speed test and a voluntary maneuver test, were made the same day, or at least the same week, pre and post gait training. Ten healthy subjects' data recorded using the same voluntary maneuvers were used for the reference. sEMG measured from ten lower limb muscles was used to observe the two features of amplitude and motor control distribution pattern, named response vector. The result showed that the average gait speed of patients increased significantly (p〈0.1) from 0.47$\pm$0.35 m/s to 0.68$\pm$0.52 m/s. In sEMG analysis, six out of nine patients showed a tendency to increase the right tibialis anterior activity during right ankle dorsiflexion from 109.7$\pm$148.5 $mutextrm{V}$ to 145.9$\pm$180.7 $mutextrm{V}$ but it was not significant (p〈0.055). In addition, only two patients showed increase of correlation coefficient and total muscle activity in the left fide during left dorsiflexion. Patients' muscle activity changes after gait training varied individually and generally depended on their muscle control abilities of the pre-STAT status. Response vector being introduced for quantitative analysis showed good Possibility to anticipate. evaluate, and/or guide patients with SCI, before and after gait training.

The Effect of Physical Pedestrian Environment on Walking Satisfaction - Focusing on the Case of Jinhae City - (물리적 보행환경이 보행만족도에 미치는 영향 - 진해시를 사례지역으로 -)

  • Byeon, Ji-Hye;Park, Kyung-Hun;Choi, Sang-Rok
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.37 no.6
    • /
    • pp.57-65
    • /
    • 2010
  • Physical activity of the people has decreased due to a sedentary lifestyle according to developing the economy throughout the world. It is thought to increase the risk of chronic diseases, including obesity, diabetes, etc. People are interested in walking, which is an easy activity to engage in as an antidote to chronic diseases. The aim of this study is to increase the diminishing physical activity of modem society by inducing walking as part of everyday life through building a walking-based activity-friendly city where people can live merrily, safely and pleasantly. For this purpose, this study conducted a satisfaction survey to dwellers of Jinhae on the physical pedestrian environments which affect determining walking participation and intentions of people, and also provided a valid model to evaluate the effects of the physical environmental factors on walking satisfaction using factor analysis and multiple linear regression analysis. The results are summarized as follows. The 18 variables of the physical pedestrian environments were selected based on pre-literature reviews. The results of the satisfaction surveys showed that the satisfaction of crossing aids in segments was highest, while the building feature was the lowest. Factor analysis was run through a two-step process. The first analysis was conducted to examine the adequacy of this factor analysis on the selected 18 variables. As a result, two variables were removed and the remaining 16 variables were extracted to the four factors by second analysis. Each factor was named function of path, effect of traffic, amenity and safety based on the each factor's commonality. Each factor score of the extracted four factors was set as the independent variable, while the overall walking satisfaction was set as the dependent variable. Then, the multiple linear regression analysis was conducted and showed that all four factors had a positive influence on the overall satisfaction of walking, especially the 'function of path' and 'amenity' factors, followed by 'effect of traffic' and 'safety'. The results of this research will be used as foundational data for creating a walking-based activity-friendly city.

Hydro-Mechanical Modelling of Fault Slip Induced by Water Injection: DECOVALEX-2019 TASK B (Step 1) (유체 주입에 의한 단층의 수리역학적 거동 해석: 국제공동연구 DECOVALEX-2019 Task B 연구 현황(Step 1))

  • Park, Jung-Wook;Park, Eui-Seob;Kim, Taehyun;Lee, Changsoo;Lee, Jaewon
    • Tunnel and Underground Space
    • /
    • v.28 no.5
    • /
    • pp.400-425
    • /
    • 2018
  • This study presents the research results and current status of the DECOVALEX-2019 project Task B. Task B named 'Fault slip modelling' is aiming at developing a numerical method to simulate the coupled hydro-mechanical behavior of fault, including slip or reactivation, induced by water injection. The first research step of Task B is a benchmark simulation which is designed for the modelling teams to familiarize themselves with the problem and to set up their own codes to reproduce the hydro-mechanical coupling between the fault hydraulic transmissivity and the mechanically-induced displacement. We reproduced the coupled hydro-mechanical process of fault slip using TOUGH-FLAC simulator. The fluid flow along a fault was modelled with solid elements and governed by Darcy's law with the cubic law in TOUGH2, whereas the mechanical behavior of a single fault was represented by creating interface elements between two separating rock blocks in FLAC3D. A methodology to formulate the hydro-mechanical coupling relations of two different hydraulic aperture models and link the solid element of TOUGH2 and the interface element of FLAC3D was suggested. In addition, we developed a coupling module to update the changes in geometric features (mesh) and hydrological properties of fault caused by water injection at every calculation step for TOUGH-FLAC simulator. Then, the transient responses of the fault, including elastic deformation, reactivation, progressive evolutions of pathway, pressure distribution and water injection rate, to stepwise pressurization were examined during the simulations. The results of the simulations suggest that the developed model can provide a reasonable prediction of the hydro-mechanical behavior related to fault reactivation. The numerical model will be enhanced by continuing collaboration and interaction with other research teams of DECOLVAEX-2019 Task B and validated using the field data from fault activation experiments in a further study.

Anxiety and Depression of The Korean Residents in China (중국 거주 조선인의 불안과 우울에 관한 실태)

  • SaKong, Jeong-Kyu;Cheung, Seung-Douk;Kim, Chang-Su;Kim, Cheol-Gu;Kim, Bong-Jin
    • Journal of Yeungnam Medical Science
    • /
    • v.9 no.2
    • /
    • pp.275-287
    • /
    • 1992
  • In order to survey the reality of anxiety and depression among the Koreans residing in China, a study was conducted between January and March of 1991, on the residents of Yun-Kil city, with subjects of 472 Koreans and 479 Chinese. The evaluation was based on the questionairs, named Combined self-rating anxiety depression scale(CADS), distributed among the subjects. ANOVA and t-test were applied for data processing. The results were as follows : There was not significant difference in the mean of total scores between the two groups. The scores of Koreans were $29.70{\pm}7.03$, while those of Chinese were $29.45{\pm}9.01$. The score of the CADS above 50(clinially significant level) was seen in 12(2.54%) Koreans and 21(4.38%) Chinese. The anxiety-depression scores relating to the items of indigestion and decreased appetite, sleep disturbance, apprehension, decreased libido were relatively high among the Koreans. The items appeared low in scores among the Koreans were faintness, fear, suicidal rumination, hopelessness, paresthesias. The highs among the Chinese were facial flushing, anxiousness, dissatisfaction, suicidal rumination. The items appeared low among the Chinese were fear, faintness, paresthesias, weight loss, suicidal rumination. In the comparison of evaluation by items between the two groups, the items placing the Koreans significantly higher over the Chinese are indigestion & decreased appetite, sleep disturbance, apprehension, decreased libido. The Chinese marked significantly higher in facial flushing, anxiousness, dissatisfaction, suicidal rumination. Those in the case of female (p<0.01 respectively), less than twenty years old (p<0.01 respectively), dissatisfied with family relationship(p<0.01 respectively), with past history of psychiatric hospitalization(Koreans p<0.01, Chinese p<0.05), pessimistic toward future, present, past self image(p<0.01 respectively) had significantly higher scores in both groups. In religion, neither group showed significant difference. In religion, neither group showed significant difference. In marital status, the Koreans showed a higher degree of divorce and separation and the Chinese in singleness(p<0.01 respectively). The Korean were higher in illiteracy and the Chinese had more college education(p<0.01 respectively). In place of growth, the Koreans showed not much difference in the areas while more Chinese grew up un large cities(p<0.01). More Koreans lived in the dormitory while the Chinese were engaged more in self-cooking(p<0.01 respectively). In pocket money per mouth, more Koreans were less than 1 dollar while the Chinese were between 7 and 10 dollars(p<0.01 respectively). There were no significant difference between two groups about religion.

  • PDF

Improving Bidirectional LSTM-CRF model Of Sequence Tagging by using Ontology knowledge based feature (온톨로지 지식 기반 특성치를 활용한 Bidirectional LSTM-CRF 모델의 시퀀스 태깅 성능 향상에 관한 연구)

  • Jin, Seunghee;Jang, Heewon;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.253-266
    • /
    • 2018
  • This paper proposes a methodology applying sequence tagging methodology to improve the performance of NER(Named Entity Recognition) used in QA system. In order to retrieve the correct answers stored in the database, it is necessary to switch the user's query into a language of the database such as SQL(Structured Query Language). Then, the computer can recognize the language of the user. This is the process of identifying the class or data name contained in the database. The method of retrieving the words contained in the query in the existing database and recognizing the object does not identify the homophone and the word phrases because it does not consider the context of the user's query. If there are multiple search results, all of them are returned as a result, so there can be many interpretations on the query and the time complexity for the calculation becomes large. To overcome these, this study aims to solve this problem by reflecting the contextual meaning of the query using Bidirectional LSTM-CRF. Also we tried to solve the disadvantages of the neural network model which can't identify the untrained words by using ontology knowledge based feature. Experiments were conducted on the ontology knowledge base of music domain and the performance was evaluated. In order to accurately evaluate the performance of the L-Bidirectional LSTM-CRF proposed in this study, we experimented with converting the words included in the learned query into untrained words in order to test whether the words were included in the database but correctly identified the untrained words. As a result, it was possible to recognize objects considering the context and can recognize the untrained words without re-training the L-Bidirectional LSTM-CRF mode, and it is confirmed that the performance of the object recognition as a whole is improved.

A Study on the Aesthetic Emotion and Creativity of 'Objet Animation' -Focused on the analysis of 'Objet' type of cultural arts education outcomes- ('오브제(Object) 애니메이션'의 미학적 정서와 창의성에 관한 연구 -문화예술교육 결과물의 '오브제(Object)' 유형 분석을 중심으로-)

  • Kim, Hyun-Young;Kim, Jae-Woong
    • Cartoon and Animation Studies
    • /
    • s.50
    • /
    • pp.43-73
    • /
    • 2018
  • This is a study on 'Objet' in animation culture art education. Research on the use of Objet in modern art is actively under way. From Cubism to Dadaism, Surrealism, Futurism and Pop art, it is no exaggeration to say that the Objet is stepping with modern art. In addition, Objet has a remarkable value in the field of visual arts expressing 'motion' such as kinetic art, video art, media art, and animation. However, there are not many cases of classifying and studying the types of Objets used in artworks. Therefore, this researcher has been influenced by the surrealism discourse and prepared six types of Objets type analysis framework. And the research focused on 'the aesthetic emotion and educational aspect of creativity improvement' of Objet animation was conducted. The type analysis framework is named as a drawing Objet, Objet of existence, a morphine Objet, epidermis Objet, assigned Objet and assemblage Objet and this type is presented and analyzed with case image. The data used in this study was focused on the outcome of Objet animation that were trained for non-experts in culture and arts education. This aesthetic emotion refers to Freud's desire for life (Eros) as Attraction, and desire for death (Thanatos) as Uncanny (fearful unfamiliarity) and explains the conflicting concept with the Animism, the indigenous religion. Next, educational aspects of Objet animation creativity improvement in relation to the term 'functional fixedness' was discussed as described by Gestalt psychologist Karl Duncker (1903-1940). Overcoming the functional fixedness is a phenomenon that is fixed only to the functional aspects of things and can't be changed. In this study, the educational aspect of creativity improvement was demonstrated as a case of overcoming the functional fixedness through 'Objet Animation' culture and art education. Ultimately, this study is to prove the aesthetic emotion and creativity of the Objet animation by analyzing Objet types. Furthermore, it is meaningful to suggest direction when using 'Objet Animation' in culture and arts education.