• Title/Summary/Keyword: nakdong river basin

Search Result 492, Processing Time 0.031 seconds

A report of 44 unrecorded bacterial species isolated from Nakdong River in Korea

  • Ju-Hyung Jeon;Sanghwa Park;Ja Young Cho;Soo-Yeong Lee;Seoni Hwang;Jun Sung Kim;Eui-Jin Kim ; Ji Young Jung
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.3
    • /
    • pp.308-324
    • /
    • 2023
  • This study investigated unrecorded freshwater bacterial species in Korea. Water and sediment samples were collected from the Nakdong River basin from 2020-2022. Bacterial isolates obtained through the conventional culture method with commercial media were subjected to 16S rRNA gene sequencing to identify unrecorded bacterial species. Results of 16S rRNA gene sequencing of the bacterial isolates revealed that a total of 44 bacterial isolates shared 16S rRNA gene sequence similarities of more than 98.65%, with validly published bacterial species not reported in Korea yet. These isolates were phylogenetically assigned to 4 phyla, 7 classes, 21 orders, 33 families, and 42 genera. A total of 2, 6, 12, and 24 species belonged to phyla Bacillota, Bacteroidota, Actinomycetota, and Pseudomonadota, respectively. Here, we provide details of these 44 unrecorded bacterial species, including Gram staining, colony and cellular morphologies, biochemical properties, and phylogenetic position.

A Study on the Nutrient Release Characteristics from Sediments in Nak-dong River (낙동강 퇴적물에서 영양염류 용출특성에 관한 연구)

  • Lee, Kyu Yeol;Lee, Kwon Choel;Kim, Ju Eon;Kim, Shin;Ahn, Jung Min;Im, Tae Hyo
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.6
    • /
    • pp.644-652
    • /
    • 2015
  • In this study the releasing of nutrients from sediments of Nak-dong River were investigated. We perfomed lab-scale simulation experiments using field sediment and ware. Nutrients, orgarni matter, particle size of the sediments and nutrients of released water were analyzed. Analyzed results of the sediments, mainly composed of mS(muddy Sand) sedimentary facies and IL were 2.46~6.83%, T-N were 1.189~2.492 mg/kg, and T-P were 333~726 mg/kg in the study area. Analyzed results of the nutrients of released water, pH and TOC were each 7.8~9.2% and 31.7~40.8% decreased after 20 days. T-N increased steadily, and NH3-N increased steadily then decreased, at this time NO3-N increase. Also NH3-N increased steadily, then decreased at this time. Furthermore release of phosphorus were mostly decreased.

Estimation and Analysis of Parameters for Rainfall-Runoff Model on the Nakdong River (낙동강 수계 유출분석을 위한 강우-유출 모형의 매개변수 산정)

  • Maeng, Seung-Jin;Lee, Soon-Hyuk;Ryoo, Kyong-Sik;Song, Gi-Heon
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.266-271
    • /
    • 2005
  • In this study, following works have been carried out : division of Nakdong River Basin into 25 sub basins, development of a technique to evaluate spatial distribution of rainfall and analysis of rainfall data of 169 stations, selection of control points, and selection of a hydrologic model(SSARR). The runoff analysis showed that the surface-subsurface separation and soil moisture index parameters are the most important two to the simulation result.

  • PDF

Assessing Future Climate Change Impact on Hydrologic and Water Quality Components in Nakdong River Basin (미래 기후변화에 따른 낙동강 유역의 수문·수질 변화)

  • Jang, Jae Ho;Ahn, Jong Ho
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.11
    • /
    • pp.1121-1130
    • /
    • 2012
  • Projected changes and their impacts on water quality are simulated in response to climate change stressors. CGHR (T63) simulation on the A1B scenario is converted to regional scale data using a statistical down-scaling method and applied to SWAT model to assess water quality impacts in Nakdong River basin. The results demonstrate that rainfall-runoff and pollutant loading in the future (2011~2100) will clearly increase as compared to the last 30-year average. The rate of pollutant loading increase is expected to continue its acceleration until 2040s. Runoff also shows similar patterns to the precipitation, increasing by 60%. Accordingly, the runoff increase results in escalation of pollutant loading by 35~45% for TSS and 5~20% for T-P. This phenomenon is more pronounced in the upper basin during winter and spring season.

The Characteristics of the Cultural Tourism Resources Distribution along the Nakdong River Basin

  • Yhang, Wii-Joo
    • Journal of Environmental Science International
    • /
    • v.12 no.8
    • /
    • pp.835-840
    • /
    • 2003
  • Many various kinds of tourism resources have been distributed along the Nakdong river basin. Previous researches have focused mainly on environmental studies, including water quality control, industrial use of water, biodiversity, etc, with little research done in the field of tourism studies. Central to this study, therefore, is the identification and analysis, from the perspective of cultural tourism, of the area's distribution and characteristics of cultural properties registered by the MOCT. Review of related literature reveals : 1) spatial range bound with the jurisdiction of the river basin like DREO and NRBEO ; 2) analytical subjects limited to cultural properties designated by the three different administrative units of government, city and province. Along with the DREO's predominance over the NRBEO in the total number of cultural properties, the result finds that two cities, Andong and Gyeongju of Gyeongbuk are assigned ownership of most of the cultural properties under the jurisdiction of DREO, while Gyeongnam that of most of the ones under the NRBEO. However, those findings suggest the simple number of cultural properties with no significant level of importance and rarity value reflected. Therefore, future studies need to develop quantified modelling keeping cultural variables in mind and create cultural indices of the competitiveness of the local governments.

The Climatological Characteristics of Monthly Precipitation over Han- and Nakdong-river Basins: Part I. Variability of Area Averaged Time Series (한강과 낙동강 유역평균 월강수량의 기후 특성: I. 유역평균 시계열의 변동)

  • Baek, Hee-Jeong;Kwon, Won-Tae
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.2
    • /
    • pp.111-119
    • /
    • 2005
  • The climatological characteristics of the area averaged monthly precipitation over the Han- and Nakdong-river basins were investigated. The data used for this study is monthly precipitation data from 51 meteorological stations for the period of 1954 to 2002. The magnitude of area averaged precipitation in the Han-river basin was about 10% larger than that in the Nakdong-river basin. However, the variability of two monthly precipitation time series exhibited similar characteristics: April precipitation tends to decrease and August precipitation increase significantly, while there was no significant trend for the other months. There were some indications of abrupt change around the 1970's in the periodicity of precipitation and relationship with El Nino index. September precipitation showed negative correlation with NINO3 index but November precipitation, positive correlation with NINO3 index, indicating a possible connection with the global-scale phenomena.

Estimating BOD, CDO and TOC Hydrologic Flux in Nakdong River Basin (낙동강 유역 BOD, COD 및 TOC의 수문학적 플럭스 추정)

  • Lee, A-Yeon;Park, Moo-Jong;Jo, Deok-Jun;Kim, Sang-Dan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.9
    • /
    • pp.830-839
    • /
    • 2010
  • This study presents a constituent load estimating procedure that can be operated with the present Korean TMDL monitoring system. The modified TANK model is used as a daily river flow simulation model whose parameters are estimated from 8-day intervals flow data. Constituent loads are estimated with the 7-parameter log linear model whose parameters are estimated by the minimum variance unbiased estimator. Results from Nakdong river basin reveals that the proposed procedure provides satisfactory TOC and BOD load estimates. As an application, a representative load duration curve is derived for working out a way to represent the overall hydrologic flux of BOD, COD and TOC at Nakdong river basin. The present water quality can be checked stochastically by Load Duration Curve through this study and presented visually.

DEVELOPMENT OF A REAL-TIME FLOOD FORECASTING SYSTEM BY HYDRAULIC FLOOD ROUTING

  • Lee, Joo-Heon;Lee, Do-Hun;Jeong, Sang-Man;Lee, Eun-Tae
    • Water Engineering Research
    • /
    • v.2 no.2
    • /
    • pp.113-121
    • /
    • 2001
  • The objective of this study is to develop a prediction mode for a flood forecasting system in the downstream of the Nakdong river basin. Ranging from the gauging station at Jindong to the Nakdong estuary barrage, the hydraulic flood routing model(DWOPER) based on the Saint Venant equation was calibrated by comparing the calculated river stage with the observed river stages using four different flood events recorded. The upstream boundary condition was specified by the measured river stage data at Jindong station and the downstream boundary condition was given according to the tide level data observed at he Nakdong estuary barrage. The lateral inflow from tributaries were estimated by the rainfall-runoff model. In the calibration process, the optimum roughness coefficients for proper functions of channel reach and discharge were determined by minimizing the sum of the differences between the observed and the computed stage. In addition, the forecasting lead time on the basis of each gauging station was determined by a numerical simulation technique. Also, we suggested a model structure for a real-time flood forecasting system and tested it on the basis of past flood events. The testing results of the developed system showed close agreement between the forecasted and observed stages. Therefore, it is expected that the flood forecasting system we developed can improve the accuracy of flood forecasting on the Nakdong river.

  • PDF

A Study on Seasonal Pollutant Distribution Characteristics of Contaminated Tributaries in Nakdong River Basin (낙동강 중점관리지류·지천의 계절적 오염발생특성 분석)

  • Na, Seungmin;Kwon, Heongak;Shin, Sang Min;Son, YoungGyu;Shin, Dongseok;Im, Tae Hyo
    • Journal of Wetlands Research
    • /
    • v.18 no.3
    • /
    • pp.301-312
    • /
    • 2016
  • This study has performed comparative analysis on characteristics of contaminated 35 tributaries on seasonal variation/point discharge load/pollutant distribution of water quality factors(8) in order to understand the effect of the watershed in Nakdong River Basin. As a results, the water quality of $BOD_5$(Biochemical Oxygen Demand), Chl-a(Chlorophyll a) and Fecal E. Coli shows II grade at tributaries of more than 50% without COD(Chemical Oxygen Demand), TP(Total Phosphate), TOC(Total Oxygen Carbon) and TN(Total Nitrogen) factors. The specific discharge(Q) were occupied about 54.4% (19 sites) as $0.05m^3/sec/km^2$ value. Among these results, the contaminant level of Dalseocheon, Hyeonjicheon, Seokkyocheon 1, Uriyeongcheon and Dasancheon was also high, which has to consider a discharged pollutant load(kg/day). The 35 major tributaries of Nakdong River were included in 7 mid-watershed, such as Nakdong Waegwan, Geumho River, Nakdong Goryung, Nakdong Changnyung, Nam River, Nakdong Milyang, Nakdong River Hagueon. Especially, the discharged pollutant load of Nam River and Geumho River also was high according to the amount of discharge such as Kachang dam, Gongsan dam and Nam river dam. Seasonal difference of the water quality factors such as $BOD_5$, TN, SS and Q was observed largely, on the other hand the TP and Chl-a was not. This is guessed due to the precipitation effect of site, biological and physicochemical degradation properties of pollutant and etc. The co-relationship between the seasonal difference and water quality factors was observed using a Pearson correlation coefficients. Besides, the Multiple Regression analysis using a Stepwise Regression method was conducted to understand the effect between seasonal difference and water quality factors/regression equations. As a result, the Multiple Regression analysis was adapted in the spring, summer and autumn without the winter, which was observed high at spring, summer and autumn in the order COD/TP, Chl-a/TOC, TOC/COD/$BOD_5$ water quality factors, respectively.

Application of Spectral Indices to Drone-based Multispectral Remote Sensing for Algal Bloom Monitoring in the River (하천 녹조 모니터링을 위한 드론 다중분광영상의 분광지수 적용성 평가)

  • Choe, Eunyoung;Jung, Kyung Mi;Yoon, Jong-Su;Jang, Jong Hee;Kim, Mi-Jung;Lee, Ho Joong
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.419-430
    • /
    • 2021
  • Remote sensing techniques using drone-based multispectral image were studied for fast and two-dimensional monitoring of algal blooms in the river. Drone is anticipated to be useful for algal bloom monitoring because of easy access to the field, high spatial resolution, and lowering atmospheric light scattering. In addition, application of multispectral sensors could make image processing and analysis procedures simple, fast, and standardized. Spectral indices derived from the active spectrum of photosynthetic pigments in terrestrial plants and phytoplankton were tested for estimating chlorophyll-a concentrations (Chl-a conc.) from drone-based multispectral image. Spectral indices containing the red-edge band showed high relationships with Chl-a conc. and especially, 3-band model (3BM) and normalized difference chlorophyll index (NDCI) were performed well (R2=0.86, RMSE=7.5). NDCI uses just two spectral bands, red and red-edge, and provides normalized values, so that data processing becomes simple and rapid. The 3BM which was tuned for accurate prediction of Chl-a conc. in productive water bodies adopts originally two spectral bands in the red-edge range, 720 and 760 nm, but here, the near-infrared band replaced the longer red-edge band because the multispectral sensor in this study had only one shorter red-edge band. This index is expected to predict more accurately Chl-a conc. using the sensor specialized with the red-edge range.