Proceedings of the Korean Information Science Society Conference
/
2000.10b
/
pp.90-92
/
2000
데이터마이닝 문제는 데이터를 그 속성들에 따라 분류하여 예측하는 것뿐만 아니라 분류된 속성들간의 연관성에 대해 잘 설명할 수 있어야 한다. 일반적으로 변수들간의 연관성을 잘 설명할 수 있으면서도 높은 예측력을 가지는 방법으로는 베이지안 네트웍 분류자(Bayesian network classifier)가 있다. 그러나 이것은 데이터 마이닝과 같은 대용량 데이터에서는 성능이 떨어지는 단점이 있다. 이에 이 논문에서는 최근 RBF 신경망이 입력변수 선정문제에 성공적으로 적용된 Reversible Jump Markov Chain Monte Carlo 방법을 이용하여 최적의 입력변수들만을 선택하여 베이지안 네트웍을 학습하는 Selective BN Augmented Naive-Bayes Classifier를 새로운 방안으로 제안하고 이를 실제 데이터마이닝 문제에 적용한 결과를 제시한다.
Junior, Estevam R. Hruschka;Galvao, Sebastian D. C. de O.
Journal of Computing Science and Engineering
/
v.1
no.2
/
pp.162-176
/
2007
Machine Learning (ML) has become very popular within Data Mining (KDD) and Artificial Intelligence (AI) research and their applications. In the ML and KDD contexts, two main approaches can be used for inducing a Bayesian Network (BN) from data, namely, Conditional Independence (CI) and the Heuristic Search (HS). When a BN is induced for classification purposes (Bayesian Classifier - BC), it is possible to impose some specific constraints aiming at increasing the computational efficiency. In this paper a new CI based approach to induce BCs from data is proposed and two algorithms are presented. Such approach is based on the Markov Blanket concept in order to impose some constraints and optimize the traditional PC learning algorithm. Experiments performed with the ALARM, as well as other six UCI and three artificial domains revealed that the proposed approach tends to execute fewer comparison tests than the traditional PC. The experiments also show that the proposed algorithms produce competitive classification rates when compared with both, PC and Naive Bayes.
Proceedings of the Korea Information Processing Society Conference
/
2015.04a
/
pp.734-736
/
2015
텍스트를 분류해내는 일이 점점 중요해지고 있는 현 시점에서 기계학습은 다른 기법들보다도 가장 효과적인 성능을 드러낸다. 그 중에서도 특히 나이브 베이즈 분류기는 간절하고 효율적으로 알려진 기계학습 모델 중에 하나이다. 본 논문은 보다 효과적인 텍스트 분류를 위해 나이브 베이즈의 기법들을 응용 및 개선하고자 한 기존의 연구들을 소개하고, 이를 분석하고자 한다.
Proceedings of the Korea Information Processing Society Conference
/
2018.05a
/
pp.420-423
/
2018
본 논문에서는 웹 및 문자 공지문을 자동으로 분류하고 추천함으로써 사용자가 원하는 공지문만을 볼 수 있도록 하는 애플리케이션을 개발한다. 본 애플리케이션은 공지문을 여러 카테고리로 자동 분류하여 사용자가 원하는 카테고리에 속한 공지문만을 볼 수 있도록 하며, 사용자가 선호할 만한 공지문을 추천하는 기능을 제공한다. 공지문 분류를 위해 다층 신경망 모델과 Naive Bayes 분류기를 사용하였으며, 공지문 추천을 위해 키워드 기반 자체 알고리즘을 사용하였다. 그 밖에 Word2Vec 을 활용한 검색어 추천 등 부가 기능을 제공하여 사용자가 쉽게 공지문을 찾을 수 있도록 하였다. 본 애플리케이션을 통해 사용자는 수많은 공지문 중 관심 있는 공지문만을 효율적으로 확인할 수 있다.
Annual Conference on Human and Language Technology
/
2010.10a
/
pp.186-190
/
2010
본 논문은 쇼핑몰의 이용 후기 중 광고성 리뷰를 분류해 내는 방법을 제안한다. 여기서 광고성 리뷰는 주로 업체에서 작성하는 것으로 리뷰 안에 광고 내용이 포함되어 있다. 국외 연구 중에는 드물게 오피니언 스팸 문서의 분류 연구가 진행되고 있지만 한국어 상품평으로부터 광고성 리뷰를 분류하는 연구는 아직 이루어지지 않고 있다. 본 논문에서는 Naive Bayes Classifier를 활용하여 광고성 리뷰를 분류하였다. 이때 확률 계산을 위해 사용된 특징 단어는 POS-Tagging+Bigram, POS-Tagging+Unigram, Bigram을 사용하여 추출하였다. 실험 결과는 POS-Tagging+Bigram 방법을 이용하였을 때 광고성 리뷰의 F-Measure가 80.35%로 정확도 높았다.
International Journal of Computer Science & Network Security
/
v.21
no.3
/
pp.275-286
/
2021
As a result of the vast amount of data that is geographically found in different locations. Distributed data mining (DDM) has taken a center stage in data mining. The use of mobile agents to enhance efficiency in DDM has gained the attention of industries, commerce and academia because it offers serious suggestions on how to solve inherent problems associated with DDM. In this paper, a novel DDM model has been proposed by using a mobile agent to enhance efficiency. The main idea behind the model is to use the Naive Bayes algorithm to give the mobile agent the ability to learn, compare, get and store the results on it from each server which has different datasets and we found that the accuracy increased roughly by 0.9% which is our main target.
Proceedings of the Korea Information Processing Society Conference
/
2010.11a
/
pp.1533-1535
/
2010
사용자의 감정을 자동으로 인식하고 3D 캐릭터 애니메이션을 통해 표현한다면 기기를 통한 통신에 더 풍부한 감성을 부여하여 의사 소통의 효과를 높일 수 있다. 본 논문에서는 IPTV와 스마트폰 기기에서 구동되는 감성 메신저의 개발에 대해 기술한다. 이를 위해 문장 및 음색 분석을 통한 감정 인식, 영상 속의 얼굴 표정 추적, 그리고 개인화된 3D 캐릭터의 표정 및 몸동작 애니메이션을 통해 감정을 전달하는 감성 메신저를 제안하고 그 효과를 서술한다. Naive Bayes 알고리즘을 이용한 채팅 문장에서의 자동 감성 인식이 개발되었으며 실험을 통해 성능 및 효과를 검증한다.
Proceedings of the Korea Information Processing Society Conference
/
2011.04a
/
pp.340-343
/
2011
음악 감정 분류에 관한 기존의 연구들은 템포, 박자, 음정, 음표, 리듬 등과 같은 음악의 멜로디와 관련된 자질을 이용하여 음악 감정을 분류하였다. 그러나 노래(Song)와 같이 가사를 포함한 음악은 같은 스타일의 멜로디라도 가사의 내용에 따라 음악에 대하여 청자가 느끼는 감정이 크게 다르다. 본 논문에서는 감정 온톨로지를 활용하여 노래 가사를 감정에 따라 분류하는 방법에 대하여 제안한다. 기구축 된 감정 온톨로지를 바탕으로 네 가지 통사적 규칙을 적용하여 노래 가사로부터 감정 자질을 추출한다. 추출된 감정 자질을 이용하여 Naive Bayes, HMM, SVM과 같은 기계학습 기법을 이용하여 8개 감정 그룹에 대해 58.8%의 정확도를 보였다.
Proceedings of the Korea Information Processing Society Conference
/
2021.05a
/
pp.501-504
/
2021
한국어 심층학습 언어모델인 KoBERT와, 확률적 기계학습 분류기인 나이브 베이즈와 로지스틱 회귀를 이용하여 유학생이 작성한 한국어 쓰기 답안지의 점수 구간을 예측하는 실험을 진행하였다. 네가지 주제('직업', '행복', '경제', '성공')를 다룬 답안지와 점수 레이블(A, B, C, D)로 쌍을 이룬 학습데이터 총 304건으로 다양한 자동분류 모델을 구축하여 7-겹 교차검증을 시행한 결과 KoBERT가 나이브 베이즈나 로지스틱 회귀보다 약간 우세한 성능을 보였다.
Proceedings of the Korea Information Processing Society Conference
/
2022.11a
/
pp.721-723
/
2022
최근 낸드 플래시 메모리 기반의 Solid State Drive(SSD)가 기존 Hard Disk Drive(HDD)를 대신하여 개인용과 산업용으로도 널리 쓰이고 있다. 핫 데이터 구분 기법은 이러한 SSD 의 성능과 수명에 중요한 역할을 하는 Garbage Collection(GC)과 Wear Leveling(WL) 기술의 기반이 된다. 본 논문에서는 핫 데이터를 예측하기 위한 나이브 베이즈 분류 기반의 새로운 핫 데이터 구분 기법을 제안한다. 제안 기법은 워크로드 액세스 패턴의 학습 단계인 초기 단계와 실제 운영 단계를 통해 다시 액세스 될 확률이 높은 데이터를 그렇지 않은 데이터와 효과적으로 구분한다. 다양한 실제 trace 기반 실험을 통해 본 제안 기법이 기존 대표적인 기법보다 평균 19.3% 높은 성능을 확인했다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.