• Title/Summary/Keyword: nahC gene

Search Result 19, Processing Time 0.024 seconds

Preparation and Characterization of Low Molecular Weight Water Soluble Chitosan Gene Carrier Fractioned according to Molecular Weight (저분자량 수용성 키토산이 분급화된 유전자 전달체의 제조 및 특성)

  • Jang, Min-Ja;Kim, Dong-Gon;Jeong, Young-Il;Jang, Mi-Kyeong;Nah, Jae-Woon
    • Polymer(Korea)
    • /
    • v.31 no.6
    • /
    • pp.555-561
    • /
    • 2007
  • To obtain low molecular weight water soluble chitosan (LMWSC) with various molecular weights, chitosan oligosaccharides (COS) with lactic acid was separated by using ultrafilteration technique and LMWSC with a free amine group was prepared by the novel salts-removal method. The characterization of LMWSC removed the lactic acid and degree of deacetylation (DDA) were identified by FT-IR and $^1H-NMR$ spectra. Polydispersity index (PDI) was $1.278{\sim}1.499$, which indicates a relatively molecular weight distribution. To identify the potential as a gene carrier, we confirmed the transfection efficiency of COS fractioned according to molecular weight successfully and the salt-removed LMWSC using 293T cell. Also, LMWSC derivatives prepared for improvement transfection efficiency were evaluated using Balb/C mice.

The Synthesis of Artery Wall Targeted Gene Carrier Using Low Molecular Water-Soluble Chitosan (저분자량 수용성 키토산을 이용한 동맥 벽 표적성 유전자 전달체의 합성)

  • Choi Chang-Yong;Jang Mi-Kyeong;Nah Jae-Woon
    • Polymer(Korea)
    • /
    • v.30 no.4
    • /
    • pp.279-285
    • /
    • 2006
  • Non-viral gene carriers continue to attract a great deal of interest due to advantageous safety profile. Among the non-viral gene carriers, cationic liposomes or synthetic gene carriers are efficient DNA carriers in vitro. but their in vivo applications are greatly hampered because of low biocompatibility. On the other hand, chitosan, a natural cationic polysaccharide, is a candidate non-viral vector for gene delivery because of its low cytotoxicity and high positive charges. In this work, targeted gene carrier was synthesized to target artery wall cells using low molecular water-soluble chitosan (LMWSC). The molecular weight $(M_W)$ and degree of de acetylation (DDA) of LMWSC were measured by relative viscometer and Kina titration. respectively. The structure of LMWSC was analyzed by measuring FTIR, $^1H-NMR,\;and\;^{13}C-NMR$. AWBP-PEG-g-LMWSC was synthesized by conjugation of the artery wall binding peptide (AWBP), a specific targeting peptide, to the end of pegylated LMWSC as a gene carrier to target artery wall cells. The synthesized AWBP-PEG-g-LMWSC were analyzed by measuring FTIR, $^1H-NMR$, zeta -potentiometer, and atomic force microscopy (AFM).

Cloning and Sequence Analysis of the xyIL Gene Responsible for 4CBA-Dihydrodiol Dehydrogenase from Pseudomonas sp. S-47

  • Park, Dong-Woo;Kim, Youngsoo;Lee, Sang-Mahn;Ka, Jong-Ok;Kim, Chi-Kyung
    • Journal of Microbiology
    • /
    • v.38 no.4
    • /
    • pp.275-280
    • /
    • 2000
  • Pseudomonas sp. S-47 is capable of catabolizing 4-chlorobenzoate (4CBA) as rarbon and energy sources under aerobic conditions via the mesa-cleavage pathway. 4CBA-dioxygenase and 4CBA-dihydrodiol dehydrogenase (4CBA-DD) catalyzed the degradation af 4CBA to produce 4-chlorocatechol in the pathway. In this study, the xylL gene encoding 4CBA-DD was cloned from the chromosomal DNA of Pseudomonas sp. S-47 and its nucleotide sequence was analyzed. The xylL gene was found to be composed of 777 nucleotide pairs and to encode a polypeptide of 28 kDa with 258 amino acid residues. The deduced amino acid sequence of the dehydrogenase (XylL) from strain S-47 exhibited 98% and 60% homologies with these of the corresponding enzymes, Pseudomonas putida mt-2 (XyIL) and Acinetobacter calcoaceticus (BenD), respectively. However, the amino arid sequences show 30% or less homology with those of Pseudomonas putida (BnzE), Pseudomonas putida Fl (TodD), Pseudomonas pseudoalcaligenes KF707 (BphB), and Pseudomonas sp. C18 (NahB). Therefore, the 4CBA-dihydrodiol dehdrogenase of strain S-47 belongs to the group I dehydrogenase involved in the degradation of mono-aryls with a carboxyl group.

  • PDF

Monitoring of petroleum hydrocarbon degradative potential of indigenous microorganisms in ozonated soil

  • ;;Rameshwar;Tatavarty
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.152-157
    • /
    • 2003
  • Diesel-contaminated soils were ozonated for different times (0 - 900 min) and incubated for 9 wk to monitor petroleum hydrocarbons (PH)-degradative potential of indigenous microorganisms in the soils. Increased ozonation time decreased not only concentration of PH but also number of microorganisms in the soils. Microorganisms in the ozonated soils increased during 9-wk incubation as monitored by culture- and nonculture-based methods. Higher (1-2 orders of magnitude) cell number was observed by quantitative analysis of soil DNA using probes detecting genes encoding 165 rRNA(rrn), naphthalene dioxygenase (nahA), toluene dioxygenase (todC), and alkane hydroxylase (alkB) than microbial abundance estimated by culture-based methods. Such PH-degraders were relatively a few or under detection limit in 900-min ozonated soil. Further PH-removal observed during the incubation period supported the presence of PH-degraders in ozonated soils. Highest reduction (25.4%) of total PH (TPH) was observed in 180-min ozonated soil white negligible reduction was shown in 900-min ozonated soil during the period, resulting in lowest TPH-concentration in 180-min ozonated soil among the ozonated soils. Microbial community composition in 9-wk incubated soils revealed slight difference between 900-min ozonated and unozonated soils as analyzed by whole cell hybridization using group-specific rRNA-targeted oligonucleotides. Results of this study suggest that appropriate ozonation and subsequent biodegradation by indigenous microorganisms may be a cost-effective and successful remediation strategy for PH-contaminated soils.

  • PDF

Interaction between Renin-Angiotensin and Endothelium-Derived Nitric Oxide Systems in Two-Kidney, One Clip Hypertensive Rats

  • Ahn, Hyun-Tack;Nah, Kook-Joo;Lee, Jong-Un
    • The Korean Journal of Physiology
    • /
    • v.30 no.1
    • /
    • pp.33-41
    • /
    • 1996
  • The present study was aimed to investigate the role of endothelium-derived nitric oxide (NO) in the control of renin release and to examine if NO is implicated in the development of two-kidney, one clip (2K1C) hypertension. Male Sprague-Dawley rats $(150{\sim}200\; g)$ were constricted at the left renal artery. They were then supplemented with $N^{G}-nitro-L-arginine\;methyl\;ester\;(L-NAME,\; 5mg/100\;mL)$ or with L-arginine hydrochloride (400 mg/100 mL) in the drinking water. The control group was supplied with normal tap water. The sham-clipped rats were operated as in 2K1C rats except for that no clip was made. The kidneys were taken to examine in vitro release of renin at days 7 and 14 following clipping the renal artery. Northern blot analysis was also done to assess the expression of renin gene in the kidney. In sham-clipped rats, L-NAME caused a sustained increase of the blood pressure, whereas L-arginine was without effect. Neither L-NAME nor L-arginine-supplementation significantly affected the development of hypertension in 2K1C rats. Plasma renin concentration (PRC) measured on day 28 did not significantly differ among the L-NAME, L-arginine and control groups either in 2K1C or in sham-clipped rats. Renin contents (RRC) in the clipped kidney were increased, while those in the contralateral kidney were decreased. The release of renin in vitro from cortical slices was also enhanced in the clipped kidney, whereas it was attenuated in the contralateral. Comparing the RRC and in vitro release, the latter was more rapidly decreased than the former in the contralateral kidney. The renin mRNA levels in the contralateral kidney were almost at their nadir at days 7 and 14 in 2K1C rats. It is suggested that NO does not affect the development of 2K1C hypertension in which the renin-angiotensin system has been activated. The data also confirm that RRC and renin gene expression are increased in the clipped kidney and suppressed in the contralateral kidney in 2K1C rats.

  • PDF

Effects of Gintonin-enriched fraction on the gene expression of six lysophosphatidic receptor subtypes

  • Lee, Rami;Lee, Byung-Hwan;Choi, Sun-Hye;Cho, Yeon-Jin;Cho, Han-Sung;Kim, Hyoung-Chun;Rhim, Hyewhon;Cho, Ik-Hyun;Rhee, Man Hee;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • v.45 no.5
    • /
    • pp.583-590
    • /
    • 2021
  • Background: Gintonin, isolated from ginseng, acts as a ginseng-derived lysophosphatidic acid (LPA) receptor ligand and elicits the [Ca2+]i transient through six LPA receptor subtypes (LPARSs). However, the long-term effects of gintonin-enriched fraction (GEF) on the gene expression of six LPARSs remain unknown. We examined changes in the gene expression of six LPA receptors in the mouse whole brain, heart, lungs, liver, kidneys, spleen, small intestine, colon, and testis after long-term oral GEF administration. Methods: C57BL/6 mice were divided into two groups: control vehicle and GEF (100 mg/kg, p.o.). After 21-day saline or GEF treatment, total RNA was extracted from nine mouse organs. Quantitative-real-time PCR (qRT-PCR) and western blot were performed to quantify changes in the gene and protein expression of the six LPARSs, respectively. Results: qRT-PCR analysis before GEF treatment revealed that the LPA6 RS was predominant in all organs except the small intestine. The LPA2 RS was most abundant in the small intestine. Long-term GEF administration differentially regulated the six LPARSs. Upon GEF treatment, the LPA6 RS significantly increased in the liver, small intestine, colon, and testis but decreased in the whole brain, heart, lungs, and kidneys. Western blot analysis of the LPA6 RS confirmed the differential effects of GEF on LPA6 receptor protein levels in the whole brain, liver, small intestine, and testis. Conclusion: The LPA6 receptor was predominantly expressed in all nine organs examined; long-term oral GEF administration differentially regulated LPA3, LPA4, and LPA6 receptors in the whole brain, heart, lungs, liver, kidneys, small intestine, and testis.

Expression of Id-1 Gene in Mouse Uterus (생쥐 자궁에서의 Id-1 유전자의 발현)

  • Nah, Hee-Young;Hong, Seok-Ho;Lee, Ji-Yoon;Chae, Hee-Dong;Kang, Byung-Moon;Kim, Chung-Hoon
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.30 no.2
    • /
    • pp.171-178
    • /
    • 2003
  • 연구 목적: Microarray data에 의해 밝혀진 생쥐자궁에서의 Id 유전자의 hormonal effect와 implantation process 동안의 관계를 조사하고자 실험을 수행하였다. 연구재료 및 방법: 난소절제한 생쥐에 estrogen을 주사하고 6시간, 12시간이 지난 후 자궁을 적출하여 두 가지 방법으로 sample을 준비하였다. 먼저 자궁전체의 RNA를 추출하여 실험하거나 laser capture microdissection (LCM) 방법으로 자궁내막상피세포, 자궁기질세포, 자궁근육층으로 분리하여 RNA를 추출하고 semi-quantative RT-PCR을 수행하여 Id 유전자의 발현을 조사하였다. 임신 4.5일째 생쥐에 Chicago blue dye를 주사하여 착상부위와 비착상부위를 분리하고 RNA를 추출하여 Id 유전자의 발현을 semiquantitative RT-PCR 방법으로 실험하였다. 결 과: Estrogen을 처리한 난소절제된 생쥐 자궁에서의 cDNA microarray 자료에서 Id-1 mRNA는 점진적으로 두 배 이상 증가하였고 Id-2 mNRA는 반대로 시간이 지날수록 두 배 이상 감소하였다. Microarray 자료를 재확인하기 위해 semi-quantitative RT-PCR을 이용하여 실험하였고, 그 결과 Id-1 유전자는 estrogen 처리 6시간까지는 큰 변화가 없었으나 12시간에서는 4배 이상의 높은 발현을 보였으며, Id-2 mRNA의 발현은 estrogen 처리 6시간과 12시간 모두에서 대조군에 비해 4배 가량 감소하였다. 이 실험군을 LCM을 이용하여 자궁내막상피세포, 자궁기질세포, 자궁근육층을 각각 분리하여 실험한 결과 estrogen 처리군에서 Id-1의 발현은 자궁내막상피세포에서만 높은 발현을 보였으며, estrogen 처리 6시간과 12시간에는 큰 차이를 보이지 않았다. 그러나, Id-2 mRNA는 자궁내막상피세포에서 estrogen 처리 6, 12시간 모두에서 높은 발현을 보였고, 근육세포층에서는 estrogen 처리 6시간에서는 변화가 거의 없었으나 12시간에는 현저하게 증가하였다. 단, 자궁기질세포에서는 대조군에 비해 estrogen 6, 12시간에서 Id-2 mRNA의 발현이 감소하였다. 임신한 생쥐 자궁의 착상부위에서는 Id-1 mNRA의 발현은 비착상부 위보다 월등하게 높은 증가를 보였다. 결 론: 난소절제 생쥐를 이용한 실험에서 Id-1, -3는 estrogen에 의해 발현이 증가하고, Id-2는 발현이 감소하였다. LCM을 이용한 실험에서는 Id-2는 이와는 달리 부위별 발현양상은 다르게 나타났지만 이는 넓은 부위를 차지하는 자궁기질에서의 발현감소가 전체적인 Id-2의 발현양상으로 나타난 것으로 추측된다. 착상부위에서의 Id의 발현은 Id-1만이 유일하게 월등한 증가를 보였다. 위의 결과를 종합해 볼 때 생쥐 자궁에서 Id 유전자는 estrogen에 의해 조절되며 직, 간접적으로 착상시기에 다양한 작용을 할 것으로 사료된다.