• Title/Summary/Keyword: nCalc

Search Result 31, Processing Time 0.025 seconds

Tectonic Setting and Arc Volcanisms of the Gyeongsang Arc in the Southeastern Korean Peninsula (한반도 남동부 경상호의 조구조 배경과 호화산작용)

  • Hwang, Sang Koo
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.367-383
    • /
    • 2012
  • The Gyeongsang Arc is the most notable of the Korea Arc that is composed of several volcanic arcs trending to NE-SW direction in the Korean peninsula. The Hayang Group has many volcanogenic interbeds of lava flows by alkaline or calc-alkaline basaltic volcanisms during early Cretaceous. Late Cretaceous calc-alkaline andesitic and rhyolitic volcanisms reconstructed the Gyeongsang Arc that consist of thick volcanic strata on the Hayang Group in The Gyeongsang Basin. The volcanisms characterize first eruptions of basaltic and andesitic lavas with small pyroclastics, and continue later eruptions of dacitic and rhyolitic ash-fall and voluminous ash-flow with some calderas and then domes and dykes. During the Early Cretaceous (about 120 Ma), oblique subduction of the Izanagi plate to NNW from N direction results in sinistral strike-slip faults to open a pull-apart basin in back-arc area of the Gyeongsang Arc, in which erupted lava flows from generation of magma by a decrease in lithostatic pressure. Therefore the Gyeongsang Basin is interpreted into back-arc basin reconstructed by a continental rifting. Arc volcanism began in about 100 Ma with exaggeration of the back-arc basin in the Gyeongsang, and then changed violently to construct volcanic arcs. During the Late Cretaceous (about 90 Ma), orthogonal subduction of the Izanagi plate to NW from NNW direction ceased development of the basin to prolong violent volcanisms.

$\acute{E}$tude du Processus de Morphogen$\grave{e}$se de l'$\hat{I}$le Rocheuse de Baek dans la Ville de Yeosu en Cor$\acute{e}$edu Sud (여수시 백도의 지형형성과정에 대한 고찰)

  • Lee, Jeong Hun
    • Journal of the Korean association of regional geographers
    • /
    • v.19 no.4
    • /
    • pp.627-640
    • /
    • 2013
  • Cette $\acute{e}$tude a pour objet d'analyser le processus de morphogen$\grave{e}$se de l'$\hat{I}$le rocheuse de Baek. Nous y voyons une cl$\acute{e}$ pour apprendre son relief marin et le processus de morphogen$\grave{e}$se des l'$\hat{I}$les m$\acute{e}$ridionales de Cor$\acute{e}$e du Sud. Le granit porphorique qui compose l'$\hat{I}$le rocheuse de Baek est une roche magmatique qui s'est form$\acute{e}$e il y a 60 million d'ann$\acute{e}$es. La cause principale de formation de l'$\hat{I}$le rocheuse de Baek, est une ligne de d$\acute{e}$lit vers le NE-SO et l'ENE-OSO, un soul$\grave{e}$vement de la plaque tectonique et une $\acute{e}$rosion par les vagues. L'$\hat{I}$le rocheuse de Baek pr$\acute{e}$sente un caract$\grave{e}$re d'$\acute{e}$ruption de magma de calc-alcalin par analyse g$\acute{e}$ochimique de son granit porphorique et fait partie du granit de l'arc volcanique. Il s'agit d'un magma qui s'est form$\acute{e}$ dans la subduction pr$\grave{e}$s du continent. Il est aussi n$\acute{e}$ssaire d'examiner un soul$\grave{e}$vement qui est plus $\acute{e}$lev$\acute{e}$ qu' un mouvement ascendant de la surface de la mer $\grave{a}$ l'$\grave{e}$re quaternaire environ de l'$\hat{I}$le rocheuse de Baek malgr$\acute{e}$ que, selon nous, nous y trouvions une faille et une terrasse marine.

  • PDF

Synthesis and Reaction Chemistry of Some Ferrocene-Containing Chelate Ligands with Dirhodium Acetate: X-ray Crystal Structure of $(\eta^1-(S,R)-CPFA)_2Rh_2(OAc)_4$

  • Kim, Eun-Jin;Kim, Tae-Jeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.11
    • /
    • pp.990-996
    • /
    • 1994
  • New ferrocene-based chelate amines, $Fe[C_5H_4CH(Me)NMe_2]_2\;(3), \;Fe[C_5H-3(CH(Me)NMe_2)(PPh_2)-1,2]_2\;(4),\;(C_5H_5)Fe(C_5H_3(CH_2NMe_2)(CH(CN)NMe_2-1,2)\;(6),\;and\;(C_5H_5)Fe(C_5H_3(CH_2NMe_2)(CH(Me)NMe_2-1,2)$ (7) have been prepared. The reaction and the coordination chemistry of 4 and other related compounds (S,R)-(1-N,N-dimethylaminoethyl)-2-dicyclohexylphosphino)ferrocene (CPFA) and 1,1'-bis-(diphenylphosphino)ferrocene (BPPF) with $Rh_2(OAc)_4(MeOH)_2$ were investigated. The reaction of the chiral ligand (S,R)-CPFA forms a complex of the type (${\eta}^1$-(S,R)-CPFA-P)$_2Rh_2(OAc)_4$ (8) in which the ligand is coordinated to both rhodium centers in a monodentate fashion through phosphorus. In contrast, the bisphosphine analogues such as BPPF and 4 afford chelate complexes of the type (${\eta}^2-PP)Rh_2(OAc)_4$ (9 & 10) where both ligands act as a chelate bidentate to a single rhodium atom. All these complexes were characterized by microanalytical and spectroscopic techniques. In one case, the structure of 8 was determined by X-ray crystallography. Crystals are monoclinic, space group C2 (No. 5), with a=26.389 (3), b=12.942 (1), c=11.825 (1) A, ${\beta}$=111.22(1)$^{\circ}$, V=3964.7 (8) $A^3$, Z=4, and $D_{calc}$=1.58 g $cm^{-3}$. Two Rh(II) centers are bridged by four $AcO^-$ groups in the ${\eta}^1$ : ${\eta}^1$ mode across a Rh-Rh single bond, and octahedral coordination at Rh(1) and Rh(1') is completed by axially coordinating (S,R)-CPFA and a briding $AcO^-$, respectively.

Thermodynamic Calculation and Observation of Microstructural Change in Ni-Mo-Cr High Strength Low Alloy RPV Steels with Alloying Elements (압력용기용 Ni-Mo-Cr계 고강도 저합금강의 합금원소 함량 변화에 따른 미세조직학적 특성변화의 열역학 계산 및 평가)

  • Park, Sang Gyu;Kim, Min-Chul;Lee, Bong-Sang;Wee, Dang-Moon
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.12
    • /
    • pp.771-779
    • /
    • 2008
  • An effective way of increasing the strength and fracture toughness of reactor pressure vessel steels is to change the material specification from that of Mn-Mo-Ni low alloy steel(SA508 Gr.3) to Ni-Mo-Cr low alloy steel(SA508 Gr.4N). In this study, we evaluate the effects of alloying elements on the microstructural characteristics of Ni-Mo-Cr low alloy steel. The changes in the stable phase of the SA508 Gr.4N low alloy steel with alloying elements were evaluated by means of a thermodynamic calculation conducted with the software ThermoCalc. The changes were then compared with the observed microstructural results. The calculation of Ni-Mo-Cr low alloy steels confirms that the ferrite formation temperature decreases as the Ni content increases because of the austenite stabilization effect. Consequently, in the microscopic observation, the lath martensitic structure becomes finer as the Ni content increases. However, Ni does not affect the carbide phases such as $M_{23}C_6 $ and $M_7C_3$. When the Cr content decreases, the carbide phases become unstable and carbide coarsening can be observed. With an increase in the Mo content, the $M_2C$ phase becomes stable instead of the $M_7C_3$ phase. This behavior is also observed in TEM. From the calculation results and the observation results of the microstructure, the thermodynamic calculation can be used to predict the precipitation behavior.

Role of Human papilloma virus Infection and Altered Methylation of Specific Genes in Esophageal Cancer

  • Mohiuddin, Mohammed Khaliq;Chava, Srinivas;Upendrum, Pavani;Latha, Madhavi;Zubeda, Syeda;Kumar, Ajith;Ahuja, Yog Raj;Hasan, Qurratulain;Mohan, Vasavi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.7
    • /
    • pp.4187-4193
    • /
    • 2013
  • Background: Evaluation of Human papilloma virus (HPV) and its association with promoter methylation of candidate genes, p53 and Aurora A in esophageal cancer. Materials and Methods: One hundred forty-one esophageal tissue samples from different pathologies were evaluated for HPV infection by PCR, while the promoter methylation status of p53 and Aurora A was assessed by methylation-specific restriction based PCR assay. Statistical analyses were performed with MedCalc and MDR software. Results: Based on endoscopy and histopathology, samples were categorized: cancers (n=56), precancers (n=7), esophagitis (n=19) and normals (n=59). HPV infection was found to be less common in cancers (19.6%), whereas its prevalence was relatively high in precancers (71.4%), esophagitis (57.8%) and normals (45.7%). p53 promoter methylation did not show any significant difference between cancer and normal tissues, whereas Aurora A promoter methylation demonstrated significant association with disease (p=0.00016, OR:5.6452, 95%CI:2.18 to 14.6) when compared to normals. Aurora A methylation and HPV infection was found in a higher percentages of precancer (66.6%), esophagitis (54.5%) and normal (45.2%) when compared to cancers (14.2%). Conclusions: Aurora A promoter methylation is significantly associated with esophageal cancer, but the effect of HPV infection on this epigenetic alteration is not significant. However MDR analysis showed that the hypostatic effect of HPV was nullified when the cases had Aurora methylation and tobacco exposure. Further HPV sub-typing may give an insight into its reduced prevalence in esophageal cancer verses normal tissue. However, with the present data it is difficult to assign any significant role to HPV in the etiopathology of esophageal cancer.

SHRIMP U-Pb Zircon Geochronology and Geochemistry of Drill Cores from the Pohang Basin (포항분지 시추 코어시료의 SHRIMP U-Pb 저어콘 연대 및 지구화학)

  • Lee, Tae-Ho;Yi, Keewook;Cheong, Chang-Sik;Jeong, Youn-Joong;Kim, Namhoon;Kim, Myoung-Jung
    • The Journal of the Petrological Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.167-185
    • /
    • 2014
  • SHRIMP zircon U-Pb ages and major element and Sr-Nd isotopic compositions were determined for drill cores (374-3390 m in depth) recovered from three boreholes in the Pohonag basin, southeastern Korea. Shallow-seated volcanic rocks and underlain plutonic rocks were geochemically classified as rhyolite and gabbro-granite, respectively. They showed high-K calc-alkaline trends on the $K_2O-SiO_2$ and AFM diagrams. Zircons from volcanic rocks of borehole PB-1 yielded concordia ages of $66.84{\pm}0.66Ma$ (n=12, MSWD=0.02) and $66.52{\pm}0.55Ma$ (n=12, MSWD=0.46). Zircons from volcanic rocks of borehole PB-2 gave a concordia age of $71.34{\pm}0.85Ma$ (n=11, MSWD=0.79) and a weighted mean $^{206}Pb/^{238}U$ ages of $49.40{\pm}0.37Ma$ (n=11, MSWD=1.9). On the other hand, zircons from plutonic rocks of borehole PB-3 yielded weighted mean $^{206}Pb/^{238}U$ ages of $262.4{\pm}3.6Ma$ (n=21, MSWD=4.5), $252.4{\pm}3.6Ma$ (n=8, MSWD=1.9) and $261.8{\pm}1.5Ma$ (n=31, MSWD=1.3). Detrital zircons from the sedimentary strata overlain the volcanic rocks showed a wide age span from Neoproterozoic to Cenozoic, with the youngest population corresponding to $21.89{\pm}1.1Ma$ (n=15, MSWD=0.04) and $21.68{\pm}1.2Ma$ (n=10, MSWD=19). These dating results indicate that the basement of the Pohang basin is composed of Late Permian plutonic rocks and overlain Late Cretaceous to Eocene volcanic sequences. Miocene sediments were deposited in the uppermost part of the basin, possibly associated with the opening of the East Sea. The Sr-Nd isotopic compositions of the Permian plutonic rocks were comparable with those reported from Permian-Triassic granitoids in the Yeongdeok area, northern Gyeongsang basin. They may have been recycled into parts of the Cretaceous-Paleogene magmatic rocks within the Gyeongsang basin.

Synthesis and Magnetic Relaxation Properties of Paramagnetic Gd-complexes of New DTPA-bis-amides. The X-ray Crystal Structure of [Gd(L)(H2O)]·3H2O (L = DTPA-bis(4-carboxylicphenyl)amide)

  • Dutta, Sujit;Kim, Suk-Kyung;Lee, Eun-Jung;Kim, Tae-Jeong;Kang, Duk-Sik;Chang, Yong-min;Kang, Sang-Ook;Han, Won-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.7
    • /
    • pp.1038-1042
    • /
    • 2006
  • A new type of DTPA-bis-amides (L1-L4) and their Gd(III)-complexes of the type $[Gd(L)(H_2O)]{\cdot}nH_2O$ (5: L1; 6: L2; 7: L3; 8: L4) have been prepared and characterized by analytical and spectroscopic techniques. The X-ray crystal structure of 8 has been determined for structural confirmation. The coordination geometry adopts a tricapped trigonal prism geometry with L4 acting as a chelate octadentate and a water molecule in the coordination sphere. Crystals are monoclinic, $P2_1$, a = 14.468(3), b = 19.235(4), c = 13.527(2) $\AA$ $\beta$ = $107.245(3)^{\circ}$, V = 3595.2(11) $\AA^3$, Z = 4, $D_{calc}$ = 1.570. Significant increases in relaxivities are observed with 6 and 7 as compared with that of $Omniscan^{(R)}$, a commercial MR agent: R1 = 12.46 $mM^{-1}\;s^{-1}$, R2 = 8.76 $mM^{-1}\;s^{-1}$ for 6; R1 = 12.77 nm-1 s-1, R2 = 7.60 mM-1 s-1 for 7; R1 = 4.9 $mM^{-1}\;s^{-1}$, R2 = 4.8 $mm^{-1}\;s^{-1}$ for $Omniscan^{(R)}$. In the case of 5, however, both R1 and R2 are found to be lower to show 2.09 $mM^{-1}\;s^{-1}$, and 1.82 $mM^{-1}\;s^{-1}$, respectively.

Comparison of Microstructure & Mechanical Properties between Mn-Mo-Ni and Ni-Mo-Cr Low Alloy Steels for Reactor Pressure Vessels (원자로 압력용기용 Mn-Mo-Ni계 및 Ni-Mo-Cr계 저합금강의 미세조직과 기계적 특성 비교)

  • Kim, Min-Chul;Park, Sang Gyu;Lee, Bong-Sang
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.3
    • /
    • pp.194-202
    • /
    • 2010
  • Application of a stronger and more durable material for reactor pressure vessels (RPVs) might be an effective way to insure the integrity and increase the efficiency of nuclear power plants. A series of research projects to apply the SA508 Gr.4 steel in ASME code to RPVs are in progress because of its excellent strength and durability compared to commercial RPV steel (SA508 Gr.3 steel). In this study, the microstructural characteristics and mechanical properties of SA508 Gr.3 Mn-Mo-Ni low alloy steel and SA508 Gr.4N Ni-Mo-Cr low alloy steel were investigated. The differences in the stable phases between these two low alloy steels were evaluated by means of a thermodynamic calculation using ThermoCalc. They were then compared to microstructural features and correlated with mechanical properties. Mn-Mo-Ni low alloy steel shows the upper bainite structure that has coarse cementite in the lath boundaries. However, Ni-Mo-Cr low alloy steel shows the mixture of lower bainite and tempered martensite structure that homogeneously precipitates the small carbides such as $M_{23}C_6$ and $M_7C_3$ due to an increase of hardenability and Cr addition. In the mechanical properties, Ni-Mo-Cr low alloy steel has higher strength and toughness than Mn-Mo-Ni low alloy steel. Ni and Cr additions increase the strength by solid solution hardening. In addition, microstructural changes from upper bainite to tempered martensite improve the strength of the low alloy steel by grain refining effect, and the changes in the precipitation behavior by Cr addition improve the ductile-brittle transition behavior along with a toughening effect of Ni addition.

Geochemistry and Petrogenesis of Pan-african Granitoids in Kaiama, North Central, Nigeria

  • Aliyu Ohiani Umaru;Olugbenga Okunlola;Umaru Adamu Danbatta;Olusegun G. Olisa
    • Economic and Environmental Geology
    • /
    • v.56 no.3
    • /
    • pp.259-275
    • /
    • 2023
  • Pan African granitoids of Kaiama is comprised of K-feldspar rich granites, porphyritic granites, and granitic gneiss that are intruded by quartz veins and aplitic veins and dykes which trend NE-SW. In order to establish the geochemical signatures, petrogenesis, and tectonic settings of the lithological units, petrological, petrographical, and geochemical studies was carried out. Petrographic analysis reveals that the granitoids are dominantly composed of quartz, plagioclase feldspar, biotite, and k-feldspar with occasional muscovites, sericite, and opaque minerals that constitute very low proportion. Major, trace, and rare earth elements geochemical data reveal that the rocks have moderate to high silica (SiO2=63-79.7%) and alumina (Al2O3=11.85-16.15) contents that correlate with the abundance of quartz, feldspars, and biotite. The rocks are calc-alkaline, peraluminous (ASI=1.0-<1.2), and S-type granitoids sourced by melting of pre-existing metasedimentary or sedimentary rocks containing Al, Na, and K oxides. They plot dominantly in the WPG and VAG fields suggesting emplacement in a post-collisional tectonic setting. On a multi-element variation diagram, the granitoids show depletion in Ba, K, P, Rb, and Ti while enrichment was observed for Th, U, Nd, Pb and Sm. Their rare-earth elements pattern is characterized by moderate fractionation ((La/Yb)N=0.52-38.24) and pronounced negative Eu-anomaly (Eu/Eu*=0.02-1.22) that points to the preservation of plagioclase from the source magma. Generally, the geochemical features of the granitoids show that they were derived by the partial melting of crustal rocks with some input from greywacke and pelitic materials in a typical post-collisional tectonic setting.

Upper Mesozoic Stratifraphic synthesis of Korean Peninsula (한반도 후기중생대층 층서종합)

  • Ki-Hong Chang
    • Economic and Environmental Geology
    • /
    • v.32 no.4
    • /
    • pp.353-363
    • /
    • 1999
  • The Cretaceous and the Upper Jurassic strata of the Korean Peninsula, entirely of continental facies, form a sedimentary mega-unit subdivided into three unconformity-bounded units. The lower, Upper Jurassic-early Lower Cretaceous unit (Jasong Synthem) occurs profusely in North Korea and is characterized by volcanic rocks of intermediate to acidic, calc-alkaline to alkaline compositions; but strata of this unit is very rare in South Korea. The middle, Hauterivian-Lower Albian unit occurs commonly in the Korean Peninsula, but some alkalinesubalkaline basalt and andesite occur only in South Korea. A recently obtained U-Pb isochron age about 113.6 Ma (Chang et at, 1998) from the zircon grains of the Kusandong Tuff in the uppermost part of the Haman Formation has thrown much light on the age of this unit. The stratotype of this Hauterivian-L. Albian unit is the Sindong and Hayang Groups of the Kyongsang Basin, where the unit is about twice thick and has more conglomerates than in sedimentary basins in North Korea. The unit shows various sedimentary cycles in different basins showing that the cyclicity is controlled by local crustal motion. The upper, Upper Albian-Upper Cretaceous unit is abundant in South Korea with prolific volcanic rocks which are intermediate to acidic and notably calc-alkaline. In North Korea, however, this unit occurs in only one locality without volcanic rocks and is not voluminous. The distribution of these three unconformity-bounded units shows a stepwise younging toward the Pacific Ocean: the lower unit occurs mainly in N Korea, the middle unit occurs in both N and S Korea, and the upper unit occurs mainly in the southern part of S Korea. The Cretaceous sedimentary basins of S Korea were genetically controlled by paralleling sinistral strike-slip faults parallel to the Pacific margin.

  • PDF