• 제목/요약/키워드: n-type solar cell

검색결과 160건 처리시간 0.039초

The Effects of Growth Temperature and Substrate Tilt Angle on GalnP/GaAs Tandem Solar Cells

  • Jun, Dong-Hwan;Kim, Chang-Zoo;Kim, Hog-Young;Shin, Hyun-Beom;Kang, Ho-Kwan;Park, Won-Kyu;Shin, Ki-Soo;Ko, Chul-Gi
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제9권2호
    • /
    • pp.91-97
    • /
    • 2009
  • The performance of GaInP/GaAs tandem solar cells with AlInP growth temperatures of 680$^{\circ}C$ and 700 $^{\circ}C$ on n-type GaAs (100) substrate with 2$^{\circ}$ and 6$^{\circ}$ tilt angles has been investigated. The series resistance and open circuit voltage of the fabricated tandem solar cells are affected by the substrate tilt angles and the growth temperatures of the window layer when zinc is doped in the tunnel diode. With carbon doping as a p-type doping source in the tunnel diode and the effort of current matching between top and bottom cells, GaInP/GaAs tandem solar cell has been exhibited 25.58% efficiency.

A Study of the Quantitative Relationship of Charge-Density Changes and the Design Area of a Fabricated Solar Cell

  • Jeon, Kyeong-Nam;Kim, Seon-Hun;Kim, Hoy-Jin;Kim, In-Sung;Kim, Sang-Hyun
    • Transactions on Electrical and Electronic Materials
    • /
    • 제12권5호
    • /
    • pp.204-208
    • /
    • 2011
  • In this paper, the design area of a fabricated solar cell has been analyzed with respect to its charge density. The mathematical calculation used for charge-density derivation was obtained from the 2001 version of a MATHCAD program. The parameter range for the calculations was ${\pm}1{\times}10^{17}cm^{-3}$, which is in the normal parameter range for n-type doping impurities ($7.0{\times}10^{17}cm^{-3}$) and also for p-type impurities ($4.0{\times}10^{17}cm^{-3}$). Therefore, it can be said that the fabricated solar-cell design area has a direct effect on charge-density changes.

The ZnS Film Deposition Technology for Cd-free Buffer Layer in CIGS Solar Cells

  • Lee, Jae-Hee;Hwang, Do-Weon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.218-218
    • /
    • 2011
  • The CIGS Solar Cells have the highest conversion efficiency in the film-type solar cells. They consist of p-type CuInSe2 film and n-type ZnO film. The CdS films are used as buffer layer in the CIGS solar cells since remarkable difference in the lattice constant and energy band gap of two films. The CdS films are toxic and make harmful circumstances. The CdS films deposition process need wet process. In this works, we design and make the hitter and lamp reflection part in the sputtering system for the ZnS films deposition as buffer layer, not using wet process. Film thickness, SEM, and AFM are measured for the uniformity valuation of the ZnS films. We conclude the optimum deposition temperature for the films uniformity less than 1.6%. The ZnS films deposited by the sputtering system are more dense and uniform than the CdS films deposited by the Chemical Bath Deposition Method(CBD) for the CIGS Solar Cells.

  • PDF

Optoelectric properties of gate-tunable n-MoS2/n-WSe2 heterojunction with proper electrode metals

  • 이섬균;박민지;유경화
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.332.2-332.2
    • /
    • 2016
  • Two dimensional transition-metal dichalcogenides (TMDs) semiconductors are attractive materials for optoelectric devices because of their direct energy bandgap and transparency. To investigate the feasibility of transparent p-n junctions, we have fabricated a p-n heterojunction consisting of p-type WSe2 and n-type MoS2 flakes since WSe2 and MoS2 with proper electrode metals exhibit p-type and n-type behaviors, respectively. These heterojunctions exhibits gate-tunable rectifying behaviors and photovoltaic effects (ECE ~ 0.2%) indicating that p-n junctions were formed. In addition, photocurrent and photovoltaic effects were observed under light illumination, which were dependent on the gate voltage. In addition, the photocurrent mapping images indicate that the photovoltaic effects comes from the junction area. Possible origins of gate-tunability are discussed.

  • PDF

Improved Carrier Tunneling and Recombination in Tandem Solar Cell with p-type Nanocrystalline Si Intermediate Layer

  • Park, Jinjoo;Kim, Sangho;Phong, Pham duy;Lee, Sunwha;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • 제8권1호
    • /
    • pp.6-11
    • /
    • 2020
  • The power conversion efficiency (PCE) of a two-terminal tandem solar cell depends upon the tunnel-recombination junction (TRJ) between the top and bottom sub-cells. An optimized TRJ in a tandem cell helps improve its open-circuit voltage (Voc), short-circuit current density (Jsc), fill factor (FF), and efficiency (PCE). One of the parameters that affect the TRJ is the buffer layer thickness. Therefore, we investigated various TRJs by varying the thickness of the buffer or intermediate layer (TRJ-buffer) in between the highly doped p-type and n-type layers of the TRJ. The TRJ-buffer layer was p-type nc-Si:H, with a doping of 0.06%, an activation energy (Ea) of 43 meV, an optical gap (Eg) of 2.04 eV, and its thickness was varied from 0 nm to 125 nm. The tandem solar cells we investigated were a combination of a heterojunction with intrinsic thin layer (HIT) bottom sub-cell and an a-Si:H (amorphous silicon) top sub-cell. The initial cell efficiency without the TRJ buffer was 7.65% while with an optimized buffer layer, its efficiency improved to 11.74%, i.e., an improvement in efficiency by a factor of 1.53.

결정질 실리콘 태양전지의 이중 반사방지막 특성에 대한 연구 (Characteristics of Crystalline Silicon Solar Cells with Double Layer Antireflection Coating by PECVD)

  • 김진국;박제준;홍지화;김남수;강기환;유권종;송희은
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2012년도 춘계학술발표대회 논문집
    • /
    • pp.243-247
    • /
    • 2012
  • The paper focuses on an anti-reflection (AR) coating deposited by PECVD in silicon solar cell fabrication. AR coating is effective to reduce the reflection of the light on the silicon wafer surface and then increase substantially the solar cell conversion efficiency. In this work, we carried out experiments to optimize double AR coating layer with silicon nitride and silicon oxide for the silicon solar cells. The p-type mono crystalline silicon wafers with $156{\times}156mm^2$ area, 0.5-3 ${\Omega}{\cdot}cm$ resistivity, and $200{\mu}m$ thickness were used. All wafers were textured in KOH solution, doped with $POCl_3$ and removed PSG before ARC process. The optimized thickness of each ARC layer was calculated by theoretical equation. For the double layer of AR coating, silicon nitride layer was deposited first using $SiH_4$ and $NH_3$, and then silicon oxide using $SiH_4$ and $N_2O$. As a result, reflectance of $SiO_2/SiN_x$ layer was lower than single $SiN_x$ and then it resulted in increase of short-circuit current and conversion efficiency. It indicates that the double AR coating layer is necessary to obtain the high efficiency solar cell with PECVD already used in commercial line.

  • PDF

SOD방법을 이용한 저가 EFG 리본 실리콘 태양전지의 효율 향상에 관한 연구 (Improving Efficiency of Low Cost EFG Ribbon Silicon Solar Cells by Using a SOD Method)

  • 김병국;임종엽;저호;오병진;박재환;이진석;장보윤;안영수;임동건
    • 한국전기전자재료학회논문지
    • /
    • 제24권3호
    • /
    • pp.240-244
    • /
    • 2011
  • The high cost of crystalline silicon solar cells has been considered as one of the major obstacles to their terrestrial applications. Spin on doping (SOD) is presented as a useful process for the manufacturing of low cost solar cells. Phosphorus (P509) was used as an n-type emitters of solar cells. N-type emitters were formed on p-type EFG ribbon Si wafers by using a SOD at different spin speed (1,000~4,000 rpm), diffusion temperatures ($800^{\circ}C{\sim}950^{\circ}C$), and diffusion time (5~30 min) in $N_2+O_2$ atmosphere. With optimum condition, we were able to achieve cell efficiency of 14.1%.

CdSe Nanocrystal Quantum Dots Based Hybrid Heterojunction Solar Cell

  • Jeong, So-Myung;Eom, S.;Park, H.;Lee, Soo-Hyoung;Han, Chang-Soo;Jeong, So-Hee
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.93-93
    • /
    • 2010
  • Semiconductor nanocrystal quantum dots (NQDs) have recently attracted considerable interest for use in photovoltaics. Band gaps of NQDs can be tuned over a considerable range by varying the particle size thereby allowing enhance absorption of solar spectrum. NQDs, synthesized using colloidal routes, are solution processable and promise for a large-area fabrication. Recent advancements in multiple-exciton generation in NQD solutions have afforded possible efficiency improvements. Various architectures have attempted to utilize the NQDs in photovoltaics, such as NQD-sensitized solar cell, NQD-bulk-heterojuction solar cell and etc. Here we have fabricated CdSe NQDs with the band gap of 1.8 eV to 2.1 eV on thin-layers of p-type organic crystallites (1.61 eV) to realize a donor-acceptor type heterojuction solar cell. Simple structure as it was, we could control the interface of electrode-p-layer, and n-p-layer and monitor the following efficiency changes. Specifically, surface molecules adsorbed on the NQDs were critical to enhance the carrier transfer among the n-layer where we could verify by measuring the photo-response from the NQD layers only. Further modifying the annealing temperature after the deposition of NQDs on p-layers allowed higher conversion efficiencies in the device.

  • PDF

$SnO_2-Si $ 이중접합 태양전지의 특성개선 (The Improvement in Properties of $SnO_2-Si $ Heterojunction Solar Cells)

  • 이#한;송정섭
    • 대한전자공학회논문지
    • /
    • 제17권6호
    • /
    • pp.65-71
    • /
    • 1980
  • SRO2-Si 이종접합 태양전지소자틀 진공증착에 의하여 제작하여 SRO2를 Si기판위에 증착후 실기중에서의 열처리(소둔)가 태양전지소자의 특성 특히 단락전류와 개방단자전압에 미치는 영향을 실험적으로 검토하여 이 열처리온도에 최적치가 있음을 알았다. 이 최적온도는 Si기액의 고유저항에 따라 차이가 있으며 고유저항이 비슷한 경우는 N형과 P형 Si 기판에 따르는 큰 차이는 없으나 같은 P형 Si기판인 경우에는 고유저항이 낮은 쪽의 최적온도가 높은 것으로 나타났다.

  • PDF

Effect of Oxygen and Diborane Gas Ratio on P-type Amorphous Silicon Oxide films and Its Application to Amorphous Silicon Solar Cells

  • Park, Jin-Joo;Kim, Young-Kuk;Lee, Sun-Wha;Lee, Youn-Jung;Yi, Jun-Sin;Hussain, Shahzada Qamar;Balaji, Nagarajan
    • Transactions on Electrical and Electronic Materials
    • /
    • 제13권4호
    • /
    • pp.192-195
    • /
    • 2012
  • We reported diborane ($B_2H_6$) doped wide bandgap hydrogenated amorphous silicon oxide (p-type a-SiOx:H) films prepared by using silane ($SiH_4$) hydrogen ($H_2$) and nitrous oxide ($N_2O$) in a radio frequency (RF) plasma enhanced chemical vapor deposition (PECVD) system. We improved the $E_{opt}$ and conductivity of p-type a-SiOx:H films with various $N_2O$ and $B_2H_6$ ratios and applied those films in regards to the a-Si thin film solar cells. For the single layer p-type a-SiOx:H films, we achieved an optical band gap energy ($E_{opt}$) of 1.91 and 1.99 eV, electrical conductivity of approximately $10^{-7}$ S/cm and activation energy ($E_a$) of 0.57 to 0.52 eV with various $N_2O$ and $B_2H_6$ ratios. We applied those films for the a-Si thin film solar cell and the current-voltage characteristics are as given as: $V_{oc}$ = 853 and 842 mV, $J_{sc}$ = 13.87 and 15.13 $mA/cm^2$. FF = 0.645 and 0.656 and ${\eta}$ = 7.54 and 8.36% with $B_2H_6$ ratios of 0.5 and 1% respectively.