• Title/Summary/Keyword: n-butyrate

Search Result 123, Processing Time 0.023 seconds

Optimization of Various Organic Acids on Photo-Fermentative Hydrogen Production using Rhodobacter sphaeroides KD131 (Rhodobacter sphaeroides KD131에 의한 유기산 광합성 발효 최적화)

  • Son, Han-Na;Kim, Mi-Sun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.2
    • /
    • pp.136-142
    • /
    • 2010
  • Photobiological $H_2$ production was compared using purple non-sulfur bacteria Rhodobacter sphaeroides KD131 in the medium containing various organic acids as the carbon source and electron doner under illumination of $110\;W/m^2$ using halogen lamp at $30^{\circ}C$. The organic acids used were 0~120 mM acetate, butyrate, lactate and malate. Initial pH 7.0 and cell concentration 1.0 at 660nm were increased to pH 8 and 4.4~5.1, respectively during 24hrs of photo-fermentation when lactate and malate were used. However, acetate and butyrate increased pH to 9 and cell concentration to 3.2~3.9 of malate at the same experimental conditions. Optimum ranges of organic acids concentration and carbon/nitrogen ratio were 30~60 mM and 10~20, respectively. When malate was used as the substrate, maximum $H_2$ production 1.1 ml $H_2$/ml broth, which is equivalent to 1.97 mol $H_2$/mol malate was observed.

Crystal Structure and Molecular Mechanism of Phosphotransbutyrylase from Clostridium acetobutylicum

  • Kim, Sangwoo;Kim, Kyung-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.10
    • /
    • pp.1393-1400
    • /
    • 2021
  • Acetone-butanol-ethanol (ABE) fermentation by the anaerobic bacterium Clostridium acetobutylicum has been considered a promising process of industrial biofuel production. Phosphotransbutyrylase (phosphate butyryltransferase, PTB) plays a crucial role in butyrate metabolism by catalyzing the reversible conversion of butyryl-CoA into butyryl phosphate. Here, we report the crystal structure of PTB from the Clostridial host for ABE fermentation, C. acetobutylicum, (CaPTB) at a 2.9 Å resolution. The overall structure of the CaPTB monomer is quite similar to those of other acyltransferases, with some regional structural differences. The monomeric structure of CaPTB consists of two distinct domains, the N- and C-terminal domains. The active site cleft was formed at the interface between the two domains. Interestingly, the crystal structure of CaPTB contained eight molecules per asymmetric unit, forming an octamer, and the size-exclusion chromatography experiment also suggested that the enzyme exists as an octamer in solution. The structural analysis of CaPTB identifies the substrate binding mode of the enzyme and comparisons with other acyltransferase structures lead us to speculate that the enzyme undergoes a conformational change upon binding of its substrate.

Effect of Hydraulic Retention Time on Fermentative Hydrogen and Byproducts Production from Food Waste (음식물쓰레기 발효 시 수리학적 체류시간에 따른 수소 및 부산물 생성 특성)

  • Kim, Sang-Hyoun;Shin, Hang-Sik
    • KSBB Journal
    • /
    • v.20 no.6
    • /
    • pp.443-446
    • /
    • 2005
  • Hydrogen fermentation from food waste was attempted at different hydraulic retention time(HRT, 18-42 h). A continuous reactor fed with ground, alkali-treated and diluted food waste(average VS 4.4%) exhibited stable hydrogen production during 126 days. Hydrogen production depended on HRT, resulting in the maximum values of 25.8 mL $H_2/g\;VS_{added}$, 0.36 mol $H_2/mol\;hexose_{added}$ and 0.91 L $H_2/L/d$ at HRT 30 h. n-Butyrate and isopropanol production increased with hydrogen production increased, while acetate production decreased. The fermentation efficiency ranged from 53.3 to 65.7%, which implied that hydrogen fermentation would substitute conventional acidogenesis of food waste.

Comparisons of In vitro Nitrate Reduction, Methanogenesis, and Fermentation Acid Profile among Rumen Bacterial, Protozoal and Fungal Fractions

  • Lin, M.;Schaefer, D.M.;Guo, W.S.;Ren, L.P.;Meng, Q.X.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.4
    • /
    • pp.471-478
    • /
    • 2011
  • The objectives were to compare the ability of various rumen microbial fractions to reduce nitrate and to assess the effect of nitrate on in vitro fermentation characteristics. Physical and chemical methods were used to differentiate the rumen microbial population into the following fractions: whole rumen fluid (WRF), protozoa (Pr), bacteria (Ba), and fungi (Fu). The three nitrogen substrate treatments were as follows: no supplemental nitrogen source, nitrate or urea, with the latter two being isonitrogenous additions. The results showed that during 24 h incubation, WRF, Pr and Ba fractions had an ability to reduce nitrate, and the rate of nitrate disappearance for the Pr fraction was similar to the WRF fraction, while the Ba fraction needed an adaptation period of 12 h before rapid nitrate disappearance. The WRF fraction had the greatest methane ($CH_4$) production and the Pr fraction had the greatest prevailing $H_2$ concentration (p<0.05). Compared to the urea treatment, nitrate diminished net gas and $CH_4$ production during incubation (p<0.05), and ammonia-N ($NH_3$-N) concentration (p<0.01). Nitrate also increased acetate, decreased propionate and decreased butyrate molar proportions (p<0.05). The Pr fraction had the highest acetate to propionate ratio (p<0.05). The Pr fraction as well as the Ba fraction appears to have an important role in nitrate reduction. Nitrate did not consistently alter total VFA concentration, but it did shift the VFA profile to higher acetate, lower propionate and lower butyrate molar proportions, consistent with less $CH_4$ production by all microbial fractions.

Basic Studies on the Apoptosis Mechanism of Trichoplusia ni Cell Line (Trichoplusia ni 세포의 apoptosis 메커니즘 규명을 위한 기초연구)

  • Lee, Jong-Min;Yang, Jai-Myung;Lee, Youn-Hyung;Chung, In-Sik
    • Applied Biological Chemistry
    • /
    • v.44 no.1
    • /
    • pp.1-6
    • /
    • 2001
  • To elucidate the apoptosis mechanism of Trichoplusia ni cell, fundamental studies for apoptosis induction and suppression were performed. Hygromycin B, a known inducer of apoptosis, started the inhibition of T. ni cell growth at $200\;{\mu}/ml$ concentration. Furthermore, at $400\;{\mu}/ml$ concentration, DNA fragmentation was detected on day 2 of incubation. Although both dexamethasone and sodium butyrate inhibited T. ni cell growth, DNA fragmentation was not detected by both treatments. Also, when apoptosis induced T. ni cells with $200\;{\mu}/ml$ hygromycin B were treated with caspase inhibitor (Ac-DEVD-CHO), the apoptotsis was suppressed by 36%. In addition, N-acetylcysteine, another apoptosis repressor, also inhibited the apoptosis of T. ni cells. In order to express the anti-apoptosis gene (bcl-2), T. ni cells were transiently transformed with bcl-2 and its expression was confirmed by western blot analysis. These results showed the potential of developing new insect cell lines with suppressed apoptosis.

  • PDF

Effect of Heat Treatment on the Start-up Performance for Anaerobic Hydrogen Fermentation of Food Waste (음식폐기물을 이용한 혐기성 수소 발효 시 초기 운전 성능에 대한 열처리 효과)

  • Lee, Chae-Young;Lee, Se-Wook;Hwang, Sun-Jin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.6
    • /
    • pp.765-771
    • /
    • 2011
  • This study was conducted to investigate the effect of heat treatment on the start-up performance for anaerobic hydrogen fermentation of food waste. The result showed that hydrogen production was $0.61{\pm}0.31$ mol $H_2$/mol hexose with heat-treatment of food waste at $70^{\circ}C$ for 60 min whereas it was $0.36{\pm}0.31$ mol $H_2$/mol hexose without heat-treatment of one. The heat treatment of food waste enhanced hydrogen yield due probably to the increase of hydrolysis as well as the decrease of non-hydrogen fermentation microorganisms. The removal efficiency of carbohydrate in reactors regardless of heat treatment of food waste maintained over 90%. The hydrogen conversion efficiency from food waste was 1.7-6.3% with heat-treatment whereas it was 0.7-4.5% without heat-treatment. At the time of switchover from batch to continuous operation, lactate concentration was high compared to the n-butyrate concentration in anaerobic hydrogen fermentation reactor without heat-treatment. Anaerobic hydrogen fermentation of food waste with heat treatment was stable in start-up periods because lactate concentration could be maintained at a relatively low compared to n-butyrate concentration due to the decrease of non-hydrogen fermentation microorganisms.

Formation of Fruit Aroma Compounds from Whey by Kluyverumyces lactis (Kluyveromyces lactis에 의한 유청으로부터 과일향 성분의 생성)

  • 김소미;이형주
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.5
    • /
    • pp.536-541
    • /
    • 1991
  • To enhance the productivity of fruit flavor compounds from whey by the lactose fermenting yeast, Kluyveromyces lactzs ATCC 8585 was treated with N-methyI-N'-nitro-N-nitrosoguanidine (NTG). After the NTG treatments, a mutant showing resistance to antifungal activity of geraniol, and strong fruity but low yeasty flavor was selected and named as K. lactis 450 K. Flavor compounds from 3-day culture broth were extracted with pentane-dichloromethane (2:l) and the concentrated oleoresins were analyzed by gas chromatography. The mutant strain produced more classes and larger amount of flavor compounds than the parent stlain. Tentatively identified volatile compounds from the culture of the mutant were: terpenes such as myrcenol; alcohols such as cis-3-hexenol, n-hexanol; esters such as ethyl isovalerate, cis- 3-hexenyl n-butyrate, n-amyl-n-hexanoate, phenyl ethyl n-propioate; ketones such as methyl vinyl ketones; other compounds such as vanillin, 3-methylcoumarin.

  • PDF

Characterization of Humanized Antibody Produced by Apoptosis-Resistant CHO Cells under Sodium Butyrate-Induced Condition

  • Kim, No-Soo;Chang, Kern-Hee;Chung, Bo-Sup;Kim, Sung-Hyun;Kim, Jung-Hoe;Lee, Gyun-min
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.6
    • /
    • pp.926-936
    • /
    • 2003
  • Overexpression of human Bcl-2 protein in recombinant Chinese hamster ovary (rCHO) cells producing humanized antibody (SH2-0.32) considerably suppressed sodium butyrate (NaBu)-induced apoptosis during batch culture by using commercially available serum-free medium, which extended the culture longevity. Due to the extended culture longevity provided by the anti-apoptotic effect of Bcl-2 overexpression, the final antibody concentration of 14C6-bcl-2 culture (Bcl-2 high producer, $23\;\mu\textrm{g}\;ml^{-1}$) was 2 times higher than that of the $SH2-0.32-{\Delta}bcl-2$ culture (cells transfected with bcl-2-deficient plasmid, $10.5\;\mu\textrm{g}\;ml^{-1}$) in the presence of NaBu. To determine the effect of NaBu/Bcl-2 overexpression on the molecular integrity of protein products, antibodies purified from 14C6-bcl-2 and $SH2-0.32-{\Delta}bcl-2$ cultures in the presence of NaBu were characterized by using various molecular assay systems. For comparison, antibody purified from the parental rCHO cell culture (SH2-0.32) in the absence of NaBu was also characterized. No significant changes in molecular weight of antibodies could be observed by SDS-PAGE. From GlycoSep-N column analysis, it was found that the core oligosaccharide structure ($GlcNAc_2Man_3GlcNAc_2$) was not affected by NaBu/Bcl-2 overexpression, while the microheterogeneity of N-linked oligosaccharide structure was slightly affected. Compared with the antibody produced in the absence of NaBu, the proportion of neutral oligosaccharides was increased from 10% (14C6-bcl-2) to 16% ($SH2-0.32-{\Delta}bcl-2$) in the presence of NaBu, which was accompanied by the reduced proportion of acidic oligosaccharides, especially of monosialylated and disialylated forms. The changes in microheterogeneous oligoformal structures of antibody in turn affected the mobility of antibody isoforms in isoelectric focusing (IEF), resulting in the occurrence of some more basic antibody isoforms produced in the presence of NaBu. However, the antigen-antibody binding properties were not changed by alteration of glycosylation pattern. The competitive enzyme-linked immunosorbent assay (ELISA) showed that the antibody produced by NaBu/Bcl-2 overexpression maintained its antigen-antibody binding properties with binding affinity of about $2.5{\times}10^9{\;}M^{-1}$. Taken together, no significant effects of NaBu/Bcl-2 overexpression on the molecular integrity of antibodies, produced by using serum-free medium, could be observed by the molecular assay systems.

Effect of Different Levels of Rumensin in Diet on Rumen Fermentation, Nutrient Digestibility and Methane Production in Cattle

  • Singh, G.P.;Mohini, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.8
    • /
    • pp.1215-1221
    • /
    • 1999
  • Twelve rumen fistulated cross-bred calves were divided into three groups and fed wheat straw and concentrate mixture according to their maintenance requirement. Animals in group II and III were fed 50 and 100mg rumensin per day, in addition to basal feed. Supplementation of rumensin in the diet decreased the dry matter intake significantly (p<0.05) along with a significant decrease in the straw intake. Digestibility coefficients of all the nutrients were not affected significantly except that of CF digestibility which was lower (p<0.05) in groups II and III as compared to group I. Among N-parameters in the rumen fluid, mean $NH_3-N$ was significantly lower in groups II and III (19.13 and 18.63 mg N/100 ml respectively) than in group I (22.68); total-N and TCA-ppt-N did not differ among the three groups. Total VFA concentration did also not differ among the three groups, however, propionate increased from 24.33 molar % to 32.73 while acetate and butyrate decreased respectively from 65.85 to 58.81% and 9.79 to 8.46%. Total VFA, bacteria and protozoa production rates were not affected significantly due to rumensin in diet. Methane production per kg DDM as well as % of methane in total gas were reduced at both the levels of rumensin on different concentrate ratios with wheat straw as roughage. Similar trend was also observed with rice straw and concentrate mixture as substrate with rumensin addition.

Denitrification of Anaerobic Sludge in Hybrid Type Anaerobic Reactor(II): Glucose as Substrate (Hybrid type 반응조에서의 혐기성 슬러지의 탈질(II): 기질이 글루코스인 경우)

  • Shin, Hang-Sik;Kim, Ku-Yong;Lee, Chae-Young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.14 no.2
    • /
    • pp.196-206
    • /
    • 2000
  • Methanogenesis and denitrification in an upflow sludge baffled filter (UBF) reactor were studied using glucose as a fermentative substrate. Experiments were carried out to investigate how to reduce ammonification by changing alkalinity and $COD/NO_3-N$ ratio. Characteristics of granular sludges were examined by specifics methanogenic activity(SMA) and specific denitrification rate(SDR) tests. Microstructures of granules were examined using a scanning electron microscopy(SEM). It was found that COD was removed efficiently owing to the diverse microorganisms. In nitrate conversion, not only $COD/NO_3-N$ ratio but also influent alkalinity played important role in the ratio of denitrification and ammonification of nitrate. This reactor achieved over 95% COD and 99% nitrate removal efficiencies when influent contained 4000 mgCOD/L and $700mgNO_3-N/L$ at the hydraulic retention time of 24 hours. As $COD/NO_3-N$ ratio decreased, granular methanogenic activities using acetate and butyrate as substrates increased while activities using propionate and glucose decreased. There were three types in granules according to the surface color; gray, yellowish gray, and black. Gray or yellowish gray-colored granules were composed two layers, which were composed of black inner side and gray or yellowish gray surface substances. SEM illustrated that both were rod-type and cocci-type microorganisms resembling Methanothrix sp. and Methanococci sp. This study showed that by controlling the influent alkalinity and $COD/NO_3-N$ ratio, ammonification and denitrification could be manipulated.

  • PDF