• Title/Summary/Keyword: n-ZnO/p-Zn-doped InP

Search Result 57, Processing Time 0.027 seconds

Ab initio Study for Electronic Property and Ferromagnetism of (Cu, N, or F)-codoped ZnO

  • Kang, Byung-Sub;Chae, Kwang-Pyo
    • Journal of Magnetics
    • /
    • v.17 no.3
    • /
    • pp.163-167
    • /
    • 2012
  • The effects on the ferromagnetism of the O or Zn defect in Cu-doped ZnO with the concentration of 2.77-8.33% have been investigated by the first-principles calculations. The Cu doping in ZnO was calculated to be a kind of p-type ferromagnetic half-metals. When the Zn vacancy exists in Cu-doped ZnO, the Cu magnetic moment increases, while for the O vacancy it is reduced. It is noticeable that the ferromagnetic state was originated from the hybridized O(2p)-Cu(3d)-O(2p) chain formed through the p-d coupling. The carrier-mediated ferromagnetism by nitrogen or fluorine does not depend on their concentration.

The Electrical and Microstructural Properties of ZnO:N Thin Films Grown in The Mixture of $N_2$ and $O_2$ by RF Magnetron Sputtering

  • Jin, Hu-Jie;Lee, Eun-Cheal;So, Soon-Jin;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.144-145
    • /
    • 2006
  • ZnO is a promising material to make high efficiency violet or blue light emitting diodes (LEDs) for its large binding energy (60meV) and big bandgap. But the high quality p-type conduction of ZnO is a dilemma to achieve LEDs with it. In present study, we presented a reliable method to prepare ZnO thin films on (100)silicon substrates by RF magnetron sputtering in the mixture ambient of $N_2$ and $O_2$, accompanying with low pressure annealing in the sputtering chamber in $O_2$ at $600^{\circ}C$ and $800^{\circ}C$ respectively. X-ray diffraction and Hail effect with Van der Paul method were performed to test ZnO films. Seeback effect was also carried out to identify carrier types in ZnO films and showed the N-doped ZnO film annealed at $800^{\circ}C$ had achieved p-type conduction.

  • PDF

Realization and Analysis of p-Type ZnO:Al Thin Film by RF Magnetron Sputtering

  • Jin, Hu-Jie;Jeong, Yun-Hwan;Park, Choon-Bae
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.2
    • /
    • pp.67-72
    • /
    • 2008
  • Al-doped p-type ZnO thin films were fabricated by RF magnetron sputtering on n-Si (100) and homo-buffer layers in pure oxygen ambient. ZnO ceramic mixed with 2 wt% $Al_2O_3$ was selected as a sputtering target. XRD spectra show that the Al-doped ZnO thin films have ZnO crystal structure. Hall Effect experiments with Van der Pauw configuration show that p-type carrier concentrations are arranged from $1.66{\times}10^{16}$ to $4.04{\times}10^{18}\;cm^{-2}$, mobilities from 0.194 to $198\;cm^2V{-1}s^{-1}$ and resistivities from 0.0963 to $18.4\;{\Omega}cm$. FESEM cross section images of different parts of a p-type ZnO:Al thin film annealed at $800^{\circ}C$ show a compact structure. Measurement for same sample shows that density is $5.40\;cm^{-3}$ which is smaller than theoretically calculated value of $5.67\;cm^{-3}$. Photoluminescence (PL) spectra at 10 K show a shoulder peak of p-type ZnO film at about 3.117 eV which is ascribed to electron transition from donor level to acceptor level (DAP).

Optical characteristics of p-type ZnO epilayers doped with Sb by metalorganic chemical vapor deposition

  • Kwon, B.J.;Cho, Y.H.;Choi, Y.S.;Park, S.J.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.122-122
    • /
    • 2010
  • ZnO is a widely investigated material for the blue and ultraviolet solid-state emitters and detectors. It has been promoted due to a wide-band gap semiconductor which has large exciton binding energy of 60 meV, chemical stability and low radiation damage. However, there are many problems to be solved for the growth of p-type ZnO for practical device applications. Many researchers have made an efforts to achieve p-type conductivity using group-V element of N, P, As, and Sb. In this letter, we have studied the optical characteristics of the antimony-doped ZnO (ZnO:Sb) thin films by means of photoluminescence (PL), PL excitation, temperature-dependent PL, and time-resolved PL techniques. We observed donor-to-acceptor-pair transition at about 3.24 eV with its phonon replicas with a periodic spacing of about 72 meV in the PL spectra of antimony-doped ZnO (ZnO:Sb) thin films at 12 K. We also investigate thermal activation energy and carrier recombination lifetime for the samples. Our result reflects that the antimony doping can generate shallow acceptor states, leading to a good p-type conductivity in ZnO.

  • PDF

Atomic Layer Deposition of Nitrogen Doped ZnO and Application for Highly Sensitive Coreshell Nanowire Photo Detector

  • Jeong, Han-Eol;Gang, Hye-Min;Cheon, Tae-Hun;Kim, Su-Hyeon;Kim, Do-Yeong;Kim, Hyeong-Jun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.26.1-26.1
    • /
    • 2011
  • We investigated the atomic layer deposition (ALD) process for nitrogen doped ZnO and the application for n-ZnO : N/p-Si (NW) coaxial hetero-junction photodetectors. ALD ZnO:N was deposited using diethylzinc (DEZ) and diluted $NH_4OH$ at $150^{\circ}C$ of substrate temperature. About 100~300 nm diameter and 5 um length of Si nanowires array were prepared using electroless etching technique in 0.108 g of $AgNO_3$ melted 20 ml HF liquid at $75^{\circ}C$. TEM images showed ZnO were deposited on densely packed SiNW structure achieving extraordinary conformality. When UV (360 nm) light was illuminated on n-ZnO:N/p-SiNW, I-V curve showed about three times larger photocurrent generation than film structure at 10 V reverse bias. Especially, at 660 nm wave length, the coaxial structure has 90.8% of external quantum efficiency (EQE) and 0.573 A/W of responsivity.

  • PDF

Defect Analysis via Photoluminescence of p-type ZnO:N Thin Film fabricated by RF Magnetron Sputtering

  • Jin, Hu-Jie;So, Soon-Jin;Park, Choon-Bae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.3
    • /
    • pp.202-206
    • /
    • 2007
  • ZnO is a promising material to make high efficient ultraviolet(UV) or blue light emitting diodes(LEDs) because of its large binding energy and energy bandgap. In this study, we prepared ZnO thin films with p-type conductivity on silicon(100) substrates by RF magnetron sputtering in the mixture of $N_2$ and $O_2$. The process was accompanied by low pressure in-situ annealing in $O_2$ at $600^{\circ}C$ and $800^{\circ}C$ respectively. Hall effect in Van der Pauw configuration showed that the N-doped ZnO film annealed at $800^{\circ}C$ has p-type conductivity. Photoluminescence(PL) spectrum of the film annealed at $800^{\circ}C$ showed UV emission related to exciton and bound to donor-acceptor pair(DAP) as well as visible emission related to many intrinsic defects.

Alanysis of the Optical Properties of p-type ZnO Thin Films Doped by P based on Ampouele-tube Method (Ampoule-tube 법으로 Phosphorus를 도핑한 P형 ZnO 박막의 광학적 특성 분석)

  • Yoo, In-Sung;Oh, Sang-Hyun;So, Soon-Jin;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.145-146
    • /
    • 2006
  • The most Important research topic in the development of ZnO LED and LD is the production of p-type ZnO thin film that has minimal stress with outstanding stoichiometric ratio. In this study, Phosphorus diffused into the undoped ZnO thin films using the ampoule-tube method for the production of p-type znO thin films. The undoped ZnO thin films were deposited by RF magnetron sputtering system on $GaAs_{0.6}P_{0.4}$/GaP and Si wafers. 4N Phosphorus (P) was diffused into the undoped ZnO thin films in ampoule-tube which was performed and $630^{\circ}C$ during 3hr. We found the diffusion condition of the conductive ZnO films which had p-type properties with the highest mobility of above 532 $cm^2$/Vs compared with other studies PL spectra measured at 10K for the purpose of analyzing optical properties of p-type ZnO thin film showed strong PL intensity in the UV emission band around 365nm ~ 415nm and 365nm ~ 385nm.

  • PDF

PL Property of Al-N Codoped p-type ZnO Thin Films Fabricated by DC Magnetron Sputtering

  • Liu, Yan-Yan;Jin, Hu-Jie;Park, Choon-Bae;Hoang, Geun-C.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.3
    • /
    • pp.89-92
    • /
    • 2009
  • High-quality Al-N doped p-type ZnO thin films were deposited on Si and buffer layer/Si by DC magnetron sputtering in a mixture of $N_2$ and $O_2$ gas. The target was ceramic ZnO mixed with $Al_2O_3$ (2 wt%). The p-type ZnO thin films showed a carrier concentration in the range of $1.5{\times}10^{15}{\sim}2.93{\times}10^{17}\;cm^{-3}$, resistivity in the range of 131.2${\sim}$2.864 ${\Omega}cm$, mobility in the range of 3.99${\sim}$31.6 $cm^2V^{-1}s^{-l}$, respectively. It was easier to dope p-type ZnO films on Si substrates than on buffer layer/Si. The film grown on Si showed the highest quality of photoluminescence (PL) characteristics. The Al donor energy level depth $(E_d)$ of Al-N codoped ZnO films was reduced to about 50 meV, and the N acceptor energy level depth $(E_a)$ was reduced to 63 meV.

A Study on the Optical Property of Al-N-codoped p-type ZnO Thin Films Fabricated by DC Magnetron Sputtering Method

  • Liu, Yan-Yan;Jin, Hu-Jie;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.319-320
    • /
    • 2009
  • In this study, high-quality Al-N doped p-type ZnO thin films were deposited on n-type Si (100) wafer or Si coated with buffer layer by DC magnetron sputtering in the mixture of $N_2$ and $O_2$ gas. The target was ceramic ZnO mixed with $Al_2O_3$ (2 wt%). The p-type ZnO thin film showed higher carrier concentration $2.93\times10^{17}cm^{-3}$, lower resistivity of $5.349\;{\Omega}cm$ and mobility of $3.99\;cm^2V^{-1}S^{-1}$, respectively. According to PL spectrum, the Al donor energy level depth ($E_d$) of Al-N codoped p-type ZnO film was reduced to about 51 meV, and the N acceptor energy level depth ($E_a$) was reduced to 63 meV, respectively.

  • PDF

Electrical Properties of P-ZnO:(Al,N) Co-doped ZnO Films Fabricated by RF Magnetron Sputtering

  • Jin, Hu-Jie;Kim, Deok-Kyu;So, Byung-Moon;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.442-443
    • /
    • 2007
  • Al-N co-doped ZnO films were fabricated on n-Si (100) and homo-buffer layers in the mixture of oxygen and nitrogen at $450^{\circ}C$ by magnetron sputtering. Target was ZnO ceramic mixed with $2wt%Al_2O_3$. XRD spectra show that as-grown and $600^{\circ}C$ annealed films are prolonged along crystal c-axis. However they are not prolonged in (001) plane vertical to c-axix. The films annealed at $800^{\circ}C$ are not prolonged in any directions. Codoping makes ZnO films unidirectional variation. XPS show that Al content hardly varies and N escapes with increasing annealing temperature from $600^{\circ}C\;to\;800^{\circ}C$. The electric properties of as-grown films were tested by Hall Effect with Van der Pauw configuration show some of them to be p-type conduction.

  • PDF