• Title/Summary/Keyword: n-Propanol+n-Decane system

Search Result 2, Processing Time 0.014 seconds

Measurement and Prediction of Autoignition Temperature of n-Propanol+n-Decane Mixture (노말프로판올과 노말데칸 혼합물의 최소자연발화온도 측정 및 예측)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.6
    • /
    • pp.55-61
    • /
    • 2014
  • The autoignition temperature (AIT) of a material is the lowest temperature at which the substance will spontaneously ignite in the absence of an external ignition source such as a spark or flame. The AIT may be used as combustion property to specify operating, storage, and materials handling procedures for processs safety. This study measured the AITs of n-Propanol+n-Decane system from ignition delay time(time lag) by using ASTM E659 apparatus. The AITs of n-Propanol and n-Decane which constituted binary system were $435^{\circ}C$ and $212^{\circ}C$, respectively. The experimental AITs of n-Propanol+n-Decane system were a good agreement with the calculated AITs by the proposed equations with a few A.A.D(average absolute deviation).

Measurement and Prediction of the Lower flash Point for n-Propanol+n-Decane System Using the Tag Open-Cup Apparatus (Tag 개방식 장치를 이용한 n-Propanol+n-Decane 계의 하부인화점 측정 및 예측)

  • Ha Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.2 s.70
    • /
    • pp.162-168
    • /
    • 2005
  • The lower flash points for the n-propanol+n-decane flammable mixture were measured by the Tag open-cup apparatus(ASTM D 1310). The experimental results of mixture exhibited the lower flash point than those of pure component in the flash point versus composition curve. The experimental value of the minimum flash point is $27^{\circ}C$ at a mole fraction of n-propanol of 0.71, and the flash point of n-propanol was $28^{\circ}C$. The experimentally obtained data were compared with the values that had been calculated by use of the prediction model, which assumes an ideal solution, and the flash point prediction models based on the van Laar equation were used to estimate the activity coefficients. The predictive curve based on an ideal solution deviated from the experimental data for this system. The experimental results demonstrate a close agreement with the predicted curves, which used the van Laar equation. The average absolute deviation(A.A.D.) from using the van Lau equation is $0.83^{\circ}C$. The methodology proposed here in this paper can thus be applied to incorporate an inherently safer design for chemical processes, such as determining safe storage and handling conditions for flammable solutions.