• Title/Summary/Keyword: n-3 polyunsaturated fatty acids

Search Result 243, Processing Time 0.042 seconds

Milk Yield, Composition, and Fatty Acid Profile in Dairy Cows Fed a High-concentrate Diet Blended with Oil Mixtures Rich in Polyunsaturated Fatty Acids

  • Thanh, Lam Phuoc;Suksombat, Wisitiporn
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.6
    • /
    • pp.796-806
    • /
    • 2015
  • To evaluate the effects of feeding linseed oil or/and sunflower oil mixed with fish oil on milk yield, milk composition and fatty acid (FA) profiles of dairy cows fed a high-concentrate diet, 24 crossbred primiparous lactating dairy cows in early lactation were assigned to a completely randomized design experiment. All cows were fed a high-concentrate basal diet and 0.38 kg dry matter (DM) molasses per day. Treatments were composed of a basal diet without oil supplement (Control), or diets of (DM basis) 3% linseed and fish oils (1:1, w/w, LSO-FO), or 3% sunflower and fish oils (1:1, w/w, SFO-FO), or 3% mixture (1:1:1, w/w) of linseed, sunflower, and fish oils (MIX-O). The animals fed SFO-FO had a 13.12% decrease in total dry matter intake compared with the control diet (p<0.05). No significant change was detected for milk yield; however, the animals fed the diet supplemented with SFO-FO showed a depressed milk fat yield and concentration by 35.42% and 27.20%, respectively, compared to those fed the control diet (p<0.05). Milk c9, t11-conjugated linoleic acid (CLA) proportion increased by 198.11% in the LSO-FO group relative to the control group (p<0.01). Milk C18:3n-3 (ALA) proportion was enhanced by 227.27% supplementing with LSO-FO relative to the control group (p<0.01). The proportions of milk docosahexaenoic acid (DHA) were significantly increased (p<0.01) in the cows fed LSO-FO (0.38%) and MIX-O (0.23%) compared to the control group (0.01%). Dietary inclusion of LSO-FO mainly increased milk c9, t11-CLA, ALA, DHA, and n-3 polyunsaturated fatty acids (PUFA), whereas feeding MIX-O improved preformed FA and unsaturated fatty acids (UFA). While the lowest n-6/n-3 ratio was found in the LSO-FO, the decreased atherogenecity index (AI) and thrombogenicity index (TI) seemed to be more extent in the MIX-O. Therefore, to maximize milk c9, t11-CLA, ALA, DHA, and n-3 PUFA and to minimize milk n-6/n-3 ratio, AI and TI, an ideal supplement would appear to be either LSO-FO or MIX-O.

Fatty Acid Profiles and Sensory Properties of Longissimus dorsi, Triceps brachii, and Semimembranosus Muscles from Korean Hanwoo and Australian Angus Beef

  • Cho, Soohyun;Park, B.Y.;Kim, J.H.;Hwang, I.H.;Kim, J.H.;Lee, J.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.12
    • /
    • pp.1786-1793
    • /
    • 2005
  • The study compared the fatty acid profiles of 3 muscles (Longissimus dorsi, LD, Triceps brachii, TB and Semimembranosus, SM) obtained from Korean Hanwoo (18 steers, 24 months old) and Australian Angus beef (18 steers, 24 months old) and assessed their role in sensory perception. The samples of each carcass were prepared in the same manner, and cooked both as traditional grilled steaks and Korean BBQ style. A total of 720 Korean sensory panelists evaluated the beef samples for tenderness, juiciness, flavor, and overall liking. Oleic acid (18:1) was significantly (p<0.05) higher in TB than that in LD and SM. The essential linoleic acid (C18:2) was significantly (p<0.05) higher in TB and SM than that in LD. For LD muscle, the proportion of saturated fatty acids was significantly (p<0.05) highest, while that of polyunsaturated fatty acids was lowest among the three muscles. Australian Angus beef had significantly (p<0.05) higher n-3 PUFA than that of the Korean Hanwoo for the three muscles, while the latter contained significantly (p<0.05) higher n-6 PUFA than that of the former. The clustering analysis showed that there a was significant difference in fatty acids such as C16:0, C16:1n7, C18:0, C18:2n6, C18:3n3, C20:3n6, C20:4n6, C22:4n6, and C22:5n3 for sensory perception (tenderness, juiciness, flavor and overall likeness) of the beef from two origins (p<0.05) among three clusters. Especially, C14:0 had a significant effect on sensory perception only for Korean Hanwoo beef; while C20:5n3 had a significant (p<0.05) effect only for Australian Angus beef based on clustering with the sensory variables.

Fatty Acid Compositions of Sea Algaes in the of Korea

  • Choe, Sun-Nam;Choi, Kang-Ju
    • Proceedings of the Korean Journal of Food and Nutrition Conference
    • /
    • 2001.12a
    • /
    • pp.125-125
    • /
    • 2001
  • Total lipid contents were 0.58∼3.00% in 9 kinds of brown algaes, 0.47∼2.16% in 5 kinds of red algaes and 0.55∼2.99% in 2 kind of green algeas, respectively. Fatty acid compositions of the algaes were determined by gas liquid chromatography. Total polyenes and n-3 polyenes of linoleic acid(18:3), stearidonic acid(18:4), eicosapentaenoic acid(20:5) and docosahexaenoic acid(22:6) were 3.88∼57.57% and 1.46∼25.67% in the brown algaes, 5.30∼39.75% and 1.17∼21.91% in the red algaes, and 7.76∼19.27% and 3.67%∼10.61% in the green algaes, respectirely. The fatty acid contents and compositions of total polyenes and n-3 polyenes were vary different in the algae groups and sepecies.

  • PDF

Effect of Fish Oils on Brain Fatty Acid Composition and Learning Performance in Rats

  • Lee, Hye-Ju
    • Journal of Nutrition and Health
    • /
    • v.27 no.9
    • /
    • pp.901-909
    • /
    • 1994
  • The effects of sardine oil(high in eicosapentaenoic acid : EPA) and tuna oil(high in docosahexaenoic acid : DHA, also high in EPA) on fatty acid composition of brain and learning ability were evaluated in male weanling Sprague-Dawley rats and compared with the effects of corn oil and beef tallow. Animals assigned by randomized block design to one of the four experimental diet groups containing dietary lipid at 15%(w/w) level were given ad libitum for 7 weeks. Food intake and body weight gain of the fish oil groups were significantly lower than those of the corn oil and beef tallow groups. However, brain weights of the groups were not significantly different. In the brain fatty acid composition, the corn oil group showed high concentrations of n-6 fatty acids, the fish oil groups of n-3 fatty acids, and the beef tallow group of saturated fatty acids. Brain EPA and DHA contents of the fish oil groups showed significantly higher than the other groups while the brain ratio of saturated/monounsaturated/polyunsaturated fatty acid was controlled in a narrow range. In a maze test, the fish oil groups appeared to arrive at the goal faster than the corn oil and beef tallow groups. It explained that EPA in diets might efficiently convert to DHA resulting in DHA accumulation in brain tissue and might increase the learning performance as DHA did.

  • PDF

A genome-wide association study for the fatty acid composition of breast meat in an F2 crossbred chicken population

  • Eunjin Cho;Minjun Kim;Sunghyun Cho;Hee-Jin So;Ki-Teak Lee;Jihye Cha;Daehyeok Jin;Jun Heon Lee
    • Journal of Animal Science and Technology
    • /
    • v.65 no.4
    • /
    • pp.735-747
    • /
    • 2023
  • The composition of fatty acids determines the flavor and quality of meat. Flavor compounds are generated during the cooking process by the decomposition of volatile fatty acids via lipid oxidation. A number of research on candidate genes related to fatty acid content in livestock species have been published. The majority of these studies focused on pigs and cattle; the association between fatty acid composition and meat quality in chickens has rarely been reported. Therefore, this study investigated candidate genes associated with fatty acid composition in chickens. A genome-wide association study (GWAS) was performed on 767 individuals from an F2 crossbred population of Yeonsan Ogye and White Leghorn chickens. The Illumina chicken 60K significant single-nucleotide polymorphism (SNP) genotype data and 30 fatty acids (%) in the breast meat of animals slaughtered at 10 weeks of age were analyzed. SNPs were shown to be significant in 15 traits: C10:0, C14:0, C18:0, C18:1n-7, C18:1n-9, C18:2n-6, C20:0, C20:2, C20:3n-6, C20:4n-6, C20:5n-3, C24:0, C24:1n-9, monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA). These SNPs were mostly located on chromosome 10 and around the following genes: ACSS3, BTG1, MCEE, PPARGC1A, ACSL4, ELOVL4, CYB5R4, ME1, and TRPM1. Both oleic acid and arachidonic acid contained the candidate genes: MCEE and TRPM1. These two fatty acids are antagonistic to each other and have been identified as traits that contribute to the production of volatile fatty acids. The results of this study improve our understanding of the genetic mechanisms through which fatty acids in chicken affect the meat flavor.

Dietary intake of fat and fatty acids by 1-5-year-old children in Korea: a cross-sectional study based on data from the sixth Korea National Health and Nutrition Examination Survey

  • Baek, YounJoo;Shim, Jae Eun;Song, SuJin
    • Nutrition Research and Practice
    • /
    • v.12 no.4
    • /
    • pp.324-335
    • /
    • 2018
  • BACKGROUND/OBJECTIVES: We examined dietary fat intake and the major food sources by young children in Korea. SUBJECTS/METHODS: A total of 1,041 children aged 1-5 years were identified from the 2013-2015 Korea National Health and Nutrition Examination Survey. Data on total fat and fatty acid intake were obtained by a single 24-h dietary recall. Food sources were identified based on the amounts of total fat and fatty acids consumption according to each food. Fat and fatty acid intakes and their food sources were presented by age group (1-2-y, n = 401; 3-5-y, n = 640). Fat and fatty acid intakes were also evaluated according to socioeconomic characteristics. RESULTS: The mean intake of fat was $27.1{\pm}0.8g$ in the 1-2-y group and $35.5{\pm}0.7g$ in the 3-5-y group, and about 23% of the total energy was obtained from fat in both age groups. The mean intake of saturated fatty acids (SFA) was $10.5{\pm}0.3g$ in the 1-2-y group and $12.7{\pm}0.3g$ in the 3-5-y group, with the 1-2-y group obtaining more energy from SFA than the 3-5-y group (9.2% vs. 8.3%). The mean intake of polyunsaturated fatty acids (PUFA) was $6.3{\pm}0.1g$ in the total subjects, with $0.8{\pm}0.03g$ of n-3 fatty acids and $5.5{\pm}0.1g$ of n-6 fatty acids being consumed. Milk, pork, and eggs were major food sources of total fat, SFA, and monounsaturated fatty acids, and soybean oil was the main contributor to PUFA in both age groups. In the 1-2-y group, children in rural areas had significantly higher intake of PUFA and n-3 fatty acids than did those in urban areas. CONCLUSIONS: Our findings provide current information on dietary fat intake among young Korean children and could be used to establish dietary strategies for improvement of health status.

Fish Oil Enriched Diet-Induced in vivo Lipid Peroxidation and Increased Excretion of Urinary Lipophilic Lipid Metabolites in Rats

  • Kim, Song-Suk
    • Nutritional Sciences
    • /
    • v.3 no.1
    • /
    • pp.18-24
    • /
    • 2000
  • Peroxidative stimuli mediated by high polyunsaturated fatty acid administration in rats induced in vivo lipid peroxidation and resulted in increased urinary excretion of a number of lipophilic aldehydes and related carbonyl compounds. These secondary lipid peroxiation products, measured as 2, 4-dinitrophenylhydrazine deritives, were detected and identified by the newly developed HPLC method. The identified urinary lipophilic nonpolar aldehydes and related carbonyl compounds were butanal, butan-2-one, pentan-2-one, hexanal, hex-2-enal, hepta-2, 4-dienal, hept-2-enal, octanal, and oct-2-enal. Lipophilic polar aldehydes such as 4-hydroxyhex-2-enal and 4-hydroxyoct-2-enal were also identified. A polyunsaturated fatty acid diet containing n-3 fatty acids generally caused high levels of urinary excretion of lipophilic aldehydes and related carbonyl compounds in rats than a normal diet. Significantly increased secondary lipid peroxidation products were hexanal, hepta-2, 4-dienal, octanal, 4-hydroxyhex-2-exal, 4-hydroxyoct-2-enal, and a number of unidentified compunds.

  • PDF

Effect of n-3 Fatty Acids on Estrogen Dependency and Protein Kinase C Activity of Human Breast Cancer Cell

  • Cho, Sung-Hee;Oh, Sun-Hee;Park, Hee-Sung
    • Preventive Nutrition and Food Science
    • /
    • v.1 no.2
    • /
    • pp.220-226
    • /
    • 1996
  • To investigate the effect of long chain n-3 polyunsaturated fatty acids on breast cancer cell growth, estrogen-dependent MCF-7 human breast cancer cells were cultured serum-free DMEM media containing 0.5$\mu\textrm{g}$/ml of differnet kinds of fatty acids; linoleic acid(LA), arachidonic acid(AA), eicosapentaenoic acid(EPA) and docosahexaenoic acid acid(DHA) and 1, 0.1, 0.2, 0.5and 1.0ng/ml 17$\beta$-estradiol as well as 10$\mu\textrm{g}$/mi insulin and 1.25 mg/ml delipidized bovine serum albumin for 3 days. Cell growth monitored by MTT assay was lower in DHA and EPA treatments as compared to LA treatment, but not with AA treatment. Estrogen concentrations at which cell growth was initially stimulated were 0.1ng/ml for LA and DHA treatments and 0.2ng/ml for EPA and AA treatments, but the degree of stimulation was 25~30% lower in DHA and EPA treatments than in LA treatment. Fatty acid analysis showed that each fatty acid in culture medium was well incoporated into celluar lipid. Protein kinase C activity of cells was most elevated in LA treatment from 2 to 8 hours of culture followed by DHA, EPA, and AA treatments. It is concluded that inhibitions of n-3 DHA and EPA on breast cancer cell growth as compard with n-6 LA is mediated via changes in membrane fatty acid composition reducing estrogen sensitivity and increasing protein kinase C activity.

  • PDF

Role of n-3 long-chain polyunsaturated fatty acids in human nutrition and health: review of recent studies and recommendations

  • Dael, Peter Van
    • Nutrition Research and Practice
    • /
    • v.15 no.2
    • /
    • pp.137-159
    • /
    • 2021
  • Long-chain (LC) n-3 polyunsaturated fatty acids (n-3 PUFAs), in particular docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), are nutrients involved in many metabolic and physiological processes, and are referred to as n-3 LCPUFA. They have been extensively studied for their effects in human nutrition and health. This paper provides an overview on metabolism, sources, dietary intake, and status of n-3 LCPUFA. A summary of the dietary recommendations for n-3 LCPUFAs for different age groups as well as specific physiological conditions is provided. Evidence for n-3 LCPUFA in cardiovascular diseases, including new studies, is reviewed. Expert recommendations generally support a beneficial effect of n-3 LCPUFA on cardiovascular health and recommend a daily intake of 500 mg as DHA and EPA, or 1-2 servings of fish per week. The role of n-3 LCPUFA on brain health, in particular neurodegenerative disorders and depression, is reviewed. The evidence for beneficial effects of n-3 LCPUFA on neurodegenerative disorders is non-conclusive despite mechanistic support and observational data. Hence, no definite n-3 LCPUFA expert recommendations are made. Data for the beneficial effect of n-3 LCPUFA on depression are generally compelling. Expert recommendations have been established: 200-300 mg/day for depression; up to 1-2 g/day for major depressive disorder. Recent studies support a beneficial role of n-3 LCPUFAs in reducing the risk for premature birth, with a daily intake of 600-800 mg of DHA during pregnancy. Finally, international experts recently reviewed the scientific evidence on DHA and arachidonic acid (ARA) in infant nutrition and concluded that the totality of data support that infant and follow-on formulas should provide both DHA and ARA at levels similar to those in breast milk. In conclusion, the available scientific data support that dietary recommendations for n-3 LCPUFA should be established for the general population and for subjects with specific physiological conditions.