• 제목/요약/키워드: myofibrillar protein gel

검색결과 54건 처리시간 0.015초

소금, 인산염, pH가 돼지 혈장단백질과 근원섬유단백질 혼합물의 기능적 특성에 미치는 영향 (Effect of NaCl, Phosphate and pH on the Functional Properties of a Mixed System of Pork Myofibrillar and Plasma Proteins)

  • 김천제;한의수
    • 한국식품과학회지
    • /
    • 제23권4호
    • /
    • pp.428-432
    • /
    • 1991
  • 본 연구는 식품산업 특히 육가공산업에 돈혈액의 이용을 위하여 NaCl, pH, phosphate가 혈장단백질과 근원섬유단백질 혼합물의 기능성에 어떠한 영향을 미치는지를 규명하고자 실시하였다. 각 단백질의 용해성은 NaCl 농도($1{\sim}4%$)와 $pH(4{\sim}8)$가 증가함에 따라 증가하였다. 혼합물(plasma+myofibrillar)의 용해성, 유화활성, 유화력은 혈장단백질 보다는 낮았으나 근원섬유단백질 보다는 높았다. 혼합물과 근원섬유단백질은 NaCl 농도가 2%에서 3%로 증가할 때 gel 강도가 현저히 증가하였다. 0.3%, polyphosphate를 첨가시 근원섬유단백질의 gel 강도는 약 4배 증가하였으며, 근원섬유단백질과 혼합물의 수분손실량이 크게 감소하였다. $3{\sim}5%$ 단백질농도에서 각 단백질의 gel 강도는 서서히 증가하였으나 $5{\sim}9%$에서는 단백질농도가 증가함에 따라 gel 강도가 크게 증가하였다.

  • PDF

Interaction of Porcine Myofibrillar Proteins and Various Gelatins: Impacts on Gel Properties

  • Noh, Sin-Woo;Song, Dong-Heon;Ham, Youn-Kyung;Kim, Tae-Kyung;Choi, Yun-Sang;Kim, Hyun-Wook
    • 한국축산식품학회지
    • /
    • 제39권2호
    • /
    • pp.229-239
    • /
    • 2019
  • The objectives of this study were to determine the interaction between porcine myofibrillar proteins and various gelatins (bovine hide, porcine skin, fish skin, and duck skin gelatins) and their impacts on gel properties of porcine myofibrillar proteins. Porcine myofibrillar protein was isolated from pork loin muscle (M. longissimus dorsi thoracis et lumborum). Control was prepared with only myofibrillar protein (60 mg/mL), and gelatin treatments were formulated with myofibrillar protein and each gelatin (9:1) at the same protein concentration. The myofibrillar protein-gelatin mixtures were heated from $10^{\circ}C$ to $75^{\circ}C$ ($2^{\circ}C/min$). Little to no impacts of gelatin addition on pH value and color characteristics of heat-induced myofibrillar protein gels were observed (p>0.05). The addition of gelatin slightly decreased cooking yield of heat-induced myofibrillar protein gels, but the gels showed lower centrifugal weight loss compared to control (p<0.05). The addition of gelatin significantly decreased hardness, cohesiveness, gumminess, and chewiness of heat-induced myofibrillar gels. Further, sodium dodecyl poly-acrylamide gel electrophoresis (SDS-PAGE) showed no interaction between myofibrillar proteins and gelatin under non-thermal conditions. Only a slight change in the endothermic peak (probably myosin) of myofibrillar protein-gelatin mixtures was found. The results of this study show that the addition of gelatin attenuated the water-holding capacity and textural properties of heat-induced myofibrillar protein gel. Thus, it could be suggested that well-known positive impacts of gelatin on quality characteristics of processed meat products may be largely affected by the functional properties of gelatin per se, rather than its interaction with myofibrillar proteins.

가열온도, 가열시간, 단백질농도가 혈장단백질과 근원섬유단백질 혼합물의 gel 특성 및 열안정성에 미치는 영향 (Effect of Heating Temperature, Time and Protein Concentration on the Gel Properties and Heat Stability of a Mixed System of Pork Myofibrillar and Plasma Proteins)

  • 김천제;한의수;고원식;최도영;이치호;정구용;최병규
    • 한국식품과학회지
    • /
    • 제25권3호
    • /
    • pp.295-298
    • /
    • 1993
  • 식품산업 특히 육가공산업에 돈혈액의 이용을 위하여 가열온도 가열시간 및 단백질 농도가 혈장단백질과 근원섬유단백질 혼합물의 gel 특성과 열안정성에 어떠한 영향을 미치는지를 규명하기 위하여 실시되었다. 혈장단백질과 혼합물(plasma+myofibrillar protein)의 용해성은 가열온도가 $70^{\circ}C$에서 $90^{\circ}C$로 증가함에 따라 크게 감소하였으며, 근원섬유단백질은 $40{\sim}60^{\circ}C$에서 용해성이 서서히 감소하였다. 또한 gel 강도와 혼탁도는 이 온도범위에서 크게 증가하였다. 가열온도 $75^{\circ}C$에서 가열시간이 경과함에 따라 혈장단백질과 혼합물의 용해성은 감소하였으나 gel 강도와 혼탁도는 증가하였다. 근원섬유단백질은 $75^{\circ}C$에서 가열시간이 경과함에도 용해성, 혼탁도, gel 강도의 변화가 거의 나타나지 않았다. 근원섬유단백질, 혈장단백질, 혼합물의 gel 강도는 단백질 농도가 5%에서 9%로 증가함에 따라 증가하였다.

  • PDF

Evaluation of Gelation Properties of Salt-Soluble Proteins Extracted from Protaetia brevitarsis Larvae and Tenebrio molitor Larvae and Application to Pork Myofibrillar Protein Gel System

  • Ji Seon Choi;Geon Ho Kim;Ha Eun Kim;Min Jae Kim;Koo Bok Chin
    • 한국축산식품학회지
    • /
    • 제43권6호
    • /
    • pp.1031-1043
    • /
    • 2023
  • The purpose of this study was to investigate the functional properties of salt-soluble proteins obtained from Protaetia brevitarsis (PB) and Tenebrio molitor (TM) larvae, the interaction between these proteins and pork myofibrillar protein (MP) in a gel system. The gel properties of salt-soluble protein extracts showed that the PB had a higher viscosity than the TM protein. However, the TM protein had higher gel strength compared with the PB protein. The gelation characteristics of the pork MP gel systems added with lyophilized insect salt-soluble protein powder showed to decrease slightly viscosity compared with MP alone. Adding the TM or PB protein powder did not affect the pork MP's hydrophobicity and sulfhydryl group levels. Furthermore, the protein bands of the MP did not change with the type or amount of insect salt-soluble protein. The cooking yields of the pork MP gels containing PB or TM protein powder were higher than those without insect protein. Regardless of the type of insect salt-soluble protein added, the pork MP's gel strength decreased. Furthermore, as the level of insect powder increased, the surface protein structure became rough and porous. The results demonstrated that proteins extracted from PB and TM larvae interfered with the gelation of pork MP in a gel system.

Evaluation of Salt, Microbial Transglutaminase and Calcium Alginate on Protein Solubility and Gel Characteristics of Porcine Myofibrillar Protein

  • Hong, Geun-Pyo;Chin, Koo-Bok
    • 한국축산식품학회지
    • /
    • 제30권5호
    • /
    • pp.746-754
    • /
    • 2010
  • Response surface methodology was adopted to model and optimize the effects of microbial transglutaminase (TG) and calcium alginate (CA) systems of various ratios on the gelation characteristics of porcine myofibrillar protein (MP) at various salt levels. The CA system consisting of sodium alginate (SA), calcium carbonate (CC) and glucono-$\delta$-lactone (GdL) showed no remarkable changes in the salt-soluble fraction, and only minor effects on electrostatic interactions were observed. Increasing CA concentration caused acid-induced hydrophobic interactions in MPs, resulting in increased MP gel strength. The TG system, containing TG and sodium caseinate (SC), induced cold-set MP gelation by formation of covalent bonding. The main advantage of the combined system was a higher cooking yield when the MP gel was heated. These results indicated that 0.7% TG combined with 0.8% CA system can form a viscoelastic MP gel, regardless of salt levels.

Evaluation of Porcine Myofibrillar Protein Gel Functionality as Affected by Microbial Transglutaminase and Red Bean [Vignia angularis] Protein Isolate at Various pH Values

  • Jang, Ho Sik;Lee, Hong Chul;Chin, Koo Bok
    • 한국축산식품학회지
    • /
    • 제35권6호
    • /
    • pp.841-846
    • /
    • 2015
  • This study was investigated to determine the effect of microbial transglutaminase (MTG) with or without red bean protein isolate (RBPI) on the porcine myofibrillar protein (MP) gel functionality at different pH values (pH 5.75-6.5). Cooking yield (CY, %), gel strength (GS, gf), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM) were determined to measure gel characteristics. Since no differences were observed the interaction between 1% RBPI and pH, data were pooled. CY increased with the addition of 1% RBPI, while it was not affected by pH values. GS increased with increased pH and increased when 1% RBPI was added, regardless of pH. There were distinctive endothermic protein peaks, at 56.55 and 75.02℃ at pH 5.75, and 56.47 and 72.43℃ at pH 6.5 in DSC results, which revealed decreased temperature of the first peak with the addition of 1% RBPI and increased pH. In SEM, a more compact structure with fewer voids was shown with the addition of 1% RBPI and increased pH from 5.75 to 6.5. In addition, the three-dimensional structure was highly dense and hard at pH 6.5 when RBPI was added. These results indicated that the addition of 1% RBPI at pH 6.5 in MTG-mediated MP represent the optimum condition to attain maximum gel-formation and protein gel functionality.

Evaluation of Pork Myofibrillar Protein Gel with Pork Skin Gelatin on Rheological Properties at Different Salt Concentrations

  • Lee, Chang Hoon;Chin, Koo Bok
    • 한국축산식품학회지
    • /
    • 제39권4호
    • /
    • pp.576-584
    • /
    • 2019
  • This study was performed to evaluate the physicochemical properties of myofibrillar protein (MP) gels containing pork skin gelatin at different salt concentrations. MP gels were prepared to the different salt levels (0.15, 0.30, and 0.45 M) with or without 1.0% of pork skin gelatin. Cooking yield (CY), gel strength, shear stress were measured to determine the physical properties, and SDS-polyacrylamide gel electrophoresis, scanning electron microscopy, fourier transform infrared spectroscopy, sulfhydryl group and protein surface hydrophobicity was performed to figure out the structural changes among the proteins. The addition of gelatin into MP increased CYs and shear stress. MP at 0.45 M salt level had the highest CY and shear stress, as compared to MPs at lower salt concentrations. As the salt concentration of MP gels increased, the microstructure became the compact and wet structures, and decreased the amount of ${\alpha}-helix$/unordered structures and ${\beta}-sheet$. MP with gelatin showed a decreased amount of ${\alpha}-helix$/unordered structures and ${\beta}-sheet$ compared to MP without gelatin. The addition of gelatin to MP did not affect the sulfhydryl group, but the sulfhydryl group decreased as increased salt levels. MP mixtures containing gelatin showed a higher hydrophobicity value than those without gelatin, regardless of salt concentration. Based on these results, the addition of gelatin increased viscosity of raw meat batter and CY of MP gels for the application to low salt meat products.

Effect of NaCl, Gum Arabic and Microbial Transglutaminase on the Gel and Emulsion Characteristics of Porcine Myofibrillar Proteins

  • Davaatseren, Munkhtugs;Hong, Geun-Pyo
    • 한국축산식품학회지
    • /
    • 제34권6호
    • /
    • pp.808-814
    • /
    • 2014
  • This study investigated the effect of gum arabic (GA) combined with microbial transglutaminase (TG) on the functional properties of porcine myofibrillar protein (MP). As an indicator of functional property, heat-set gel and emulsion characteristics of MP treated with GA and/or TG were explored under varying NaCl concentrations (0.1-0.6 M). The GA improved thermal gelling ability of MP during thermal processing and after cooling, and concomitantly added TG assisted the formation of viscoelastic MP gel formation. Meanwhile, the addition of GA decreased cooking yield of MP gel at 0.6 M NaCl concentration, and the yield was further decreased by TG addition, mainly attributed by enhancement of protein-protein interactions. Emulsion characteristics indicated that GA had emulsifying ability and the addition of GA increased the emulsification activity index (EAI) of MP-stabilized emulsion. However, GA showed a negative effect on emulsion stability, particularly great drop in the emulsion stability index (ESI) was found in GA treatment at 0.6 M NaCl. Consequently, the results indicated that GA had a potential advantage to form a viscoelastic MP gel. For the practical aspect, the application of GA in meat processing had to be limited to the purposes of texture enhancer such as restructured products, but not low-salt products and emulsion-type meat products.

Evaluation of Acid-treated Fish Sarcoplasmic Proteins on Physicochemical and Rheological Characteristics of Pork Myofibrillar Protein Gel Mediated by Microbial Transglutaminase

  • Hemung, Bung-Orn;Chin, Koo Bok
    • 한국축산식품학회지
    • /
    • 제35권1호
    • /
    • pp.50-57
    • /
    • 2015
  • Fish sarcoplasmic protein (SP) is currently dumped as waste from surimi industry and its recovery by practical method for being the non-meat ingredient in meat industry would be a strategy to utilize effectively the fish resource. This study was aimed to apply pH treatment for fish SP recovery and evaluated its effect on pork myofibrillar protein (MP) gel. The pH values of fish SP were changed to 3 and 12, and neutralized to pH 7 before lyophilizing the precipitated protein after centrifugation. Acid-treated fish SP (AFSP) showed about 4-fold higher recovery yield than that of alkaline-treated SP and water absorption capacity was also about 1.2-fold greater. Because of the high recovery yield and water absorption capacity, AFSP was selected to incorporate into MP with/without microbial transglutaminase (MTG). The effects of AFSP and MTG on the physicochemical and rheological characteristics of MP and MP gel were evaluated. MTG induced an increase shear stress of the MP mixture and increase the breaking force of MP gels. MP gel lightness was decreased by adding AFSP. MP gel with MTG showed higher cooking loss than that without MTG. A reduction of cooking loss was observed when the AFSP was added along with MTG, where the insoluble particles were found. Therefore, AFSP could be contributed as a water holding agent in meat protein gel.

Effects of pH-treated Fish Sarcoplasmic Proteins on the Functional Properties of Chicken Myofibrillar Protein Gel Mediated by Microbial Transglutaminase

  • Hemung, Bung-Orn;Chin, Koo Bok
    • 한국축산식품학회지
    • /
    • 제34권3호
    • /
    • pp.307-315
    • /
    • 2014
  • pH adjustment would be of advantage in improving the water holding capacity of muscle proteins. The objective of this study was to evaluate the addition of fish sarcoplasmic protein (SP) solution, which was adjusted to pH 3.0 or 12.0, neutralized to pH 7.0, and lyophilized to obtain the acid- and alkaline-treated SP samples, on the functional properties of the chicken myofibrillar protein induced by microbial transglutaminase (MTG). The solubility of alkaline-treated SP was higher than that of the acid counterpart; however, those values of the two pH-treated samples were lower than that of normal SP (p<0.05). All SP solutions were mixed with myofibrillar proteins (MP) extracted from chicken breast, and incubated with MTG. The shear stresses of MP with acid- and alkaline-treated SP were higher than that of normal SP. The thermal stability of MP mixture reduced upon adding SP, regardless of the pH treatment. The breaking force of MP gels with acid-treated SP increased more than those of alkaline-treated SP, while normal SP showed the highest value. The MP gel lightness increased, but cooking loss reduced, with the addition of SP. Smooth microstructure of the gel surface was observed. These results indicated that adjusting the pH of SP improved the water holding capacity of chicken myofibrillar proteins induced by MTG.