• Title/Summary/Keyword: myelination

Search Result 50, Processing Time 0.036 seconds

Coculture of Schwann Cells and Neuronal Cells for Myelination in Rat

  • Kim, Ji-Young;Choi, Chang-Shik;Hong, Seong-Karp
    • Rapid Communication in Photoscience
    • /
    • v.3 no.3
    • /
    • pp.48-49
    • /
    • 2014
  • For in vitro myelination system, Schwann cells and neuronal cells of rat were cocultured. Schwann cells and neuronal cells, respectively, were obtained from dorsal root ganglion of rat embryos (E15). This method includes four steps: first step of suspension of the embryonic dorsal root ganglion cells, second step of addition of anti-mitotic cocktail, third step of purification of dorsal root cells, and fourth step of addition of Schwann cells to dorsal root ganglion cells. We made a highly purified population of myelination in a short period through this procedure and identified myelination basic protein using antibody of myelination basic protein.

Coculture of Schwann Cells and Neuronal Cells for Myelination in Rat (랫트에서 수초화를 위한 슈반세포와 뉴런세포의 공동배양)

  • Kweon, Tae-Dong;Sa, Young-Hee;Hong, Seong-Karp
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.822-825
    • /
    • 2014
  • For in vitro myelination system, Schwann cells and neuronal cells of rat were cocultured. Schwann cells and neuronal cells, respectively, were obtained from dorsal root ganglion of rat embryos (E15). This method includes four steps: first step of suspension of the embryonic dorsal root ganglion cells, second step of addition of anti-mitotic cocktail, third step of purification of dorsal root cells, and fourth step of addition of Schwann cells to dorsal root ganglion cells. We made a highly purified population of myelination in a short period through this procedure and identified myelination basic protein using antibody of myelination basic protein.

  • PDF

Identification of Myelination using Schwann Cells and Neuron Cells (슈반세포와 뉴런세포을 이용한 수초화의 확인)

  • Kim, Ji-Young;Sa, Young-Hee;Hong, Seong-Karp
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.989-992
    • /
    • 2014
  • Myelination using Schwann cells and neuron cells was performed in rat. Schwann cells and neuron cells from dorsal root ganglion (DRG) of rat embryos (E16) were cultured, respectively. The embryonic DRG cells purified were cultured and anti-mitotic agents were added. Purified the embryonic Schwann cells were cultured and added to the embryonic DRG cells purified. A purified population of myelination in vitro system was accomplished and identified formation of myelination using antibody of neurofilament protein.

  • PDF

Insulin enhances neurite extension and myelination of diabetic neuropathy neurons

  • Pham, Vuong M.;Thakor, Nitish
    • The Korean Journal of Pain
    • /
    • v.35 no.2
    • /
    • pp.160-172
    • /
    • 2022
  • Background: The authors established an in vitro model of diabetic neuropathy based on the culture system of primary neurons and Schwann cells (SCs) to mimic similar symptoms observed in in vivo models of this complication, such as impaired neurite extension and impaired myelination. The model was then utilized to investigate the effects of insulin on enhancing neurite extension and myelination of diabetic neurons. Methods: SCs and primary neurons were cultured under conditions mimicking hyperglycemia prepared by adding glucose to the basal culture medium. In a single culture, the proliferation and maturation of SCs and the neurite extension of neurons were evaluated. In a co-culture, the percentage of myelination of diabetic neurons was investigated. Insulin at different concentrations was supplemented to culture media to examine its effects on neurite extension and myelination. Results: The cells showed similar symptoms observed in in vivo models of this complication. In a single culture, hyperglycemia attenuated the proliferation and maturation of SCs, induced apoptosis, and impaired neurite extension of both sensory and motor neurons. In a co-culture of SCs and neurons, the percentage of myelinated neurites in the hyperglycemia-treated group was significantly lower than that in the control group. This impaired neurite extension and myelination was reversed by the introduction of insulin to the hyperglycemic culture media. Conclusions: Insulin may be a potential candidate for improving diabetic neuropathy. Insulin can function as a neurotrophic factor to support both neurons and SCs. Further research is needed to discover the potential of insulin in improving diabetic neuropathy.

Myelination and Demyelination of Schwann cells and Neuron cells (슈반세포와 뉴런세포의 수초화와 탈수초화)

  • Kim, Hyun Joo;Kim, Ji-Young;Hong, Seong-Karp
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.830-833
    • /
    • 2015
  • Schwann cells and neuron cells from dorsal root ganglion (DRG) of rat embryos (E16) were isolated and purified in vitro system. The purified DRG cells with anti-mitotic agents and purified Schwann cells, respectively, were cocultured and then consummated myelination processing. This myelination system was treated by M. leprae-specific phenolic glycolipid-1 (PGL-1) and then accomplished demyelination system. We compared with myelination and demyelination using neurofilament of monoclonal antibody.

  • PDF

Induction of Demyelination by Infection of Semliki Forest Virus

  • Kim, Hyun Joo;Choi, Chang-Shik;Hong, Seong-Karp
    • Rapid Communication in Photoscience
    • /
    • v.5 no.1
    • /
    • pp.11-12
    • /
    • 2016
  • Schwann cells and neuronal cells from dorsal root ganglion (DRG) in embryos of rat were cultured in vitro respectively. The purified neuronal cells with anti-mitotic agents and purified Schwann cells were co-cultured and then accomplished myelination processing. Infection of Semliki forest virus into this myelinated co-culture system was performed and then accomplished demyelination. We identified myelination and demyelination processing using antibody of neuropeptide Y.

Lack of Myelination in the Anterior Limbs of the Internal Capsule Associated with Cri-du-Chat Syndrome: Case Report

  • Lee, Hyo Jin;You, Sun Kyoung;Lee, So Mi;Cho, Hyun-Hae
    • Investigative Magnetic Resonance Imaging
    • /
    • v.19 no.2
    • /
    • pp.114-116
    • /
    • 2015
  • A 21-month-old girl with cri-du-chat syndrome in conjunction with developmental delay underwent brain magnetic resonance imaging (MRI). The MRI showed hypoplasia of the brain stem, a normal cerebellum, thinning of the corpus callosum, and a lack of myelination in both anterior limbs of the internal capsule. She also had neonatal bilateral subependymal cysts. We believe that the symmetrical lack of myelination in both anterior limbs of the internal capsule could be a diagnostic clue of cri-du-chat syndrome.

Study on the Effects of Methylation of Myelin Basic Protein in Myelination of Nerve Cells (신경세포의 Myelination에 있어서 Myelin Basic Protein의 Methyl화 현상에 관한 연구)

  • 이향우;전재광
    • YAKHAK HOEJI
    • /
    • v.31 no.5
    • /
    • pp.266-272
    • /
    • 1987
  • It is reasonably well known that there is a relationship between myelin formation and methylation of myelin basic protein in nerve cells. One of the suggestions is that arginine methylation of myelin basic protein could be of aid in the conjugation of myelin protein with the nonpolar lipid to form myelin. Abnormality in methylation of myclin basic protein might induce the neurological diseases in experimental animals as well as in human being. In the biological system, the methylation reaction is catalyzed by protein methaylse I using S-adenosyl-L-methionine as methyl donor. In this study, we examined the changes of S-adenosyl-L-methionine concentration and protein methylase I activity in developing rat brain tissues. The results are sumraerized as followings: (1) In brain tissues of fetus rat, the concentration of S-adenosyl-L-methionine was gradually decreased until to birth. However, the concentration in brain tissues of infant rat was suddenly increased at 7th day(just before myelination occur) birth. (2) Protein methylase I activity was decreased until to birth in brain of fetus rat and increased temporally just after birth, However, the enzyme activity showed no changes around 7th day after birth.

  • PDF

The effects of Korean Red Ginseng-derived components on oligodendrocyte lineage cells: Distinct facilitatory roles of the non-saponin and saponin fractions, and Rb1, in proliferation, differentiation and myelination

  • Lee, Ahreum;Kwon, Oh Wook;Jung, Kwi Ryun;Song, Gyun Jee;Yang, Hyun-Jeong
    • Journal of Ginseng Research
    • /
    • v.46 no.1
    • /
    • pp.104-114
    • /
    • 2022
  • Background: Abnormalities of myelin, which increases the efficiency of action potential conduction, are found in neurological disorders. Korean Red Ginseng (KRG) demonstrates therapeutic efficacy against some of these conditions, however effects on oligodendrocyte (OL)s are not well known. Here, we examined the effects of KRG-derived components on development and protection of OL-lineage cells. Methods: Primary OL precursor cell (OPC) cultures were prepared from neonatal mouse cortex. The protective efficacies of the KRG components were examined against inhibitors of mitochondrial respiratory chain activity. For in vivo function of Rb1 on myelination, after 10 days of oral gavage into adult male mice, forebrains were collected. OPC proliferation were assessed by BrdU incorporation, and differentiation and myelination were examined by qPCR, western blot and immunocytochemistry. Results: The non-saponin promoted OPC proliferation, while the saponin promoted differentiation. Both processes were mediated by AKT and extracellular regulated kinase (ERK) signaling. KRG extract, the saponin and non-saponin protected OPCs against oxidative stress, and both KRG extract and the saponin significantly increased the expression of the antioxidant enzyme. Among 11 major ginsenosides tested, Rb1 significantly increased OL membrane size in vitro. Moreover, Rb1 significantly increased myelin formation in adult mouse brain. Conclusion: All KRG components prevented OPC deaths under oxidative stress. While non-saponin promoted proliferation, saponin fraction increased differentiation and OL membrane size. Furthermore, among all the tested ginsenosides, Rb1 showed the biggest increase in the membrane size and significantly enhanced myelination in vivo. These results imply therapeutic potentials of KRG and Rb1 for myelin-related disorders.

Infection of Semliki Forest Virus Induces Demyelination of Neuron (Semliki Forest Virus 감염은 뉴런의 탈수초를 유발한다)

  • Kim, Hyun Joo;Sa, Young-Hee;Hong, Seong-Karp
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.714-717
    • /
    • 2017
  • Schwann cells and Neuronal cells were isolated from dorsal root ganglion (DRG) in embryos of rat in vitro respectively. The cultured Schwann cells and cultured neuronal cells, respectively were co-cultured in a same plate. These cells were performed accomplishment of myelination. This myelinated co-culture system was infected by Semliki forest virus and then induced demyelination processing in this myelinated co-culture. We identified myelination and demyelination processing using antibody of peripheral myelin protein 22 (PMP 22) meaning presence of myelinated neuron.

  • PDF