• Title/Summary/Keyword: mycotoxin

Search Result 252, Processing Time 0.018 seconds

Effect of Milling on Reduction of Fusarium Mycotoxins in Barley (보리 도정이 Fusarium 곰팡이독소 저감에 미치는 효과)

  • Seul Gi Baek;Mi-Jeong Lee;Ju-Young Nah;Soo Bin Yim;Jung-Hye Choi;Jang Nam Choi;Ja Yeong Jang;Jung-Wook Yang;Theresa Lee
    • Research in Plant Disease
    • /
    • v.29 no.4
    • /
    • pp.384-389
    • /
    • 2023
  • Milling can affect the distribution of mycotoxins in small grains. To investigate the effects on barley, seven hulled barley and three naked barley samples naturally contaminated with trichothecenes and zearalenone were obtained and milled at commonly used rates. Both barleys were simultaneously contaminated with deoxynivalenol and its acetyl derivatives (98.1-2,197.8 ㎍/kg), nivalenol and its acetyl derivative (468.5-3,965.1 ㎍/kg), and zearalenone (4.1-274.2 ㎍/kg). Milling hulled barleys at a rate of 67% reduced the mycotoxins in the grain by 90.9% for deoxynivalenol, 87.7% for nivalenol, and 93.2% for zearalenone. The reduction in naked barleys (milled at a rate of 70%) was slightly lower than in hulled barleys, with 88.6% for deoxynivalenol, 80.2% for nivalenol, and 70.1% for zearalenone. In both barleys, the acetyl derivatives of deoxynivalenol and nivalenol were reduced by 100%. However, barley bran had significantly higher mycotoxin concentrations than the pre-milled grains: bran from hulled barley had a 357% increase in deoxynivalenol, 252% increase in nivalenol, and 169% increase in zearalenone. Similarly, bran from naked barley had a 337% increase in deoxynivalenol, 239% increase in nivalenol, and 554% increase in zearalenone. These results show that mycotoxins present in the outer layers of barley grain can be effectively removed through the milling process. As milling redistributes mycotoxins from the grain into the bran, however, it shows that advance monitoring of barley bran is recommended when using barley bran for human or animal consumption.

A Study on the Safety of Mycotoxins in Grains and Commonly Consumed Foods (곡류 등 다소비 식품 중 곰팡이독소 안전성 조사 연구)

  • Kim, Jae-Kwan;Kim, Young-Sug;Lee, Chang-Hee;Seo, Mi Young;Jang, Mi Kyung;Ku, Eun-Jung;Park, Kwang-Hee;Yoon, Mi-Hye
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.6
    • /
    • pp.470-476
    • /
    • 2017
  • The purpose of this study was to investigate and evaluate the safety of the grains, nut products, beans and oilseeds being sold in Gyeonggi province by analyzing mycotoxins. A multi-mycotoxins analysis method based on LC-MS/MS was validated and applied for the determination of eight mycotoxins, including aflatoxins ($B_1$, $B_2$, $G_1$ and $G_2$), fumonisins ($B_1$, $B_2$), zearalenone and ochratoxcin A in 134 samples. The limit of detection (LOD) and limit of quantitation (LOQ) for the eight mycotoxins ranged from 0.14 to $8.25{\mu}g/kg$ and from 1.08 to $7.21{\mu}g/kg$, respectively. Recovery rates of mycotoxins were determined in the range of 61.1 to 97.5% with RSD of 1.0~14.5% (n=3). Fumonisin $B_1$, $B_2$, zearalenone, and ochratoxin A were detected in 22 samples, indicating that 27% of grains, 12.5% of beans and 11.8% of oilseeds were contaminated. Fumonisin and zearalenone were detected simultaneously in 2 adlays and 3 sorghums. Fumonisin $B_1$ and $B_2$ were detected simultaneously in most samples whereas fumonisin $B_1$ was detected in 1 adlay, 1 millet and 1 sesame sample. The average detected amount of fumonisin was $49.3{\mu}g/kg$ and $10.1{\mu}g/kg$ for grains and oilseeds, respectively. The average detected amount of zearalenone was $1.9{\mu}g/kg$ and $1.5{\mu}g/kg$ for grains and beans, respectively. In addition, the average amount of ochratoxin A was $0.08{\mu}g/kg$ for grains. The calculated exposure amounts of fumonisin, zeralenone and ochratoxin A for grains, beans and oilseeds were below the PMTDI/PTWI.